skip to main content

Title: Convolutional Normalization: Improving Deep Convolutional Network Robustness and Training
; ; ; ; ; ;
Award ID(s):
2009752 1922658
Publication Date:
Journal Name:
Advances in neural information processing systems
Sponsoring Org:
National Science Foundation
More Like this
  1. Gatherings of thousands to millions of people frequently occur for an enormous variety of events, and automated counting of these high-density crowds is useful for safety, management, and measuring significance of an event. In this work, we show that the regularly accepted labeling scheme of crowd density maps for training deep neural networks is less effective than our alternative inverse k-nearest neighbor (i$k$NN) maps, even when used directly in existing state-of-the-art network structures. We also provide a new network architecture MUD-i$k$NN, which uses multi-scale upsampling via transposed convolutions to take full advantage of the provided i$k$NN labeling. This upsampling combined with the i$k$NN maps further improves crowd counting accuracy. Our new network architecture performs favorably in comparison with the state-of-the-art. However, our labeling and upsampling techniques are generally applicable to existing crowd counting architectures.
  2. Normalization techniques have become a basic component in modern convolutional neural networks (ConvNets). In particular, many recent works demonstrate that promoting the orthogonality of the weights helps train deep models and improve robustness. For ConvNets, most existing methods are based on penalizing or normalizing weight matrices derived from concatenating or flattening the convolutional kernels. These methods often destroy or ignore the benign convolutional structure of the kernels; therefore, they are often expensive or impractical for deep ConvNets. In contrast, we introduce a simple and efficient Convolutional Normalization'' (ConvNorm) method that can fully exploit the convolutional structure in the Fourier domain and serve as a simple plug-and-play module to be conveniently incorporated into any ConvNets. Our method is inspired by recent work on preconditioning methods for convolutional sparse coding and can effectively promote each layer's channel-wise isometry. Furthermore, we show that our ConvNorm can reduce the layerwise spectral norm of the weight matrices and hence improve the Lipschitzness of the network, leading to easier training and improved robustness for deep ConvNets. Applied to classification under noise corruptions and generative adversarial network (GAN), we show that the ConvNorm improves the robustness of common ConvNets such as ResNet and the performance of GAN.more »We verify our findings via numerical experiments on CIFAR and ImageNet. Our implementation is available online at \url{}.« less