skip to main content


Title: Observation of strong excitonic magneto-chiral anisotropy in twisted bilayer van der Waals crystals
Abstract The interplay between chirality and magnetism generates a distinct physical process, the magneto-chiral effect, which enables one to develop functionalities that cannot be achieved solely by any of the two. Such a process is universal with the breaking of parity-inversion and time-reversal symmetry simultaneously. However, the magneto-chiral effect observed so far is weak when the matter responds to photons, electrons, or phonons. Here we report the first observation of strong magneto-chiral response to excitons in a twisted bilayer tungsten disulfide with the amplitude of excitonic magneto-chiral (ExMCh) anisotropy reaches a value of ~4%. We further found the ExMCh anisotropy features with a spectral splitting of ~7 nm, precisely the full-width at half maximum of the excitonic chirality spectrum. Without an externally applied strong magnetic field, the observed ExMCh effect with a spontaneous magnetic moment from the ferromagnetic substrate of thulium iron garnet at room temperature is favorable for device applications. The unique ExMCh processes provide a new pathway to actively control magneto-chiral applications in photochemical reactions, asymmetric synthesis, and drug delivery.  more » « less
Award ID(s):
2005096
NSF-PAR ID:
10332034
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Broken spatial and time reversal symmetries in materials often give rise to new emergent phenomena in the interaction between light and matter. The combination of chirality and broken time reversal symmetry in a magnetic field leads to magneto–chiral phenomena, such as the nonreciprocity of transmission. Here, we construct a terahertz hybrid metamaterial that combines the natural optical activity of a chiral metallic gammadion bilayer and the magneto-optical activity of semiconductor indium antimonide in a magnetic field. We report a resonant magneto–chiral effect that leads to polarization-independent nonreciprocal optical transmittance. Furthermore, we discover a magneto-optical Faraday effect that is resonantly controlled by the natural optical activity of the chiral gammadion bilayer. Unlike optical activity due to chirality, the novel Faraday effect is odd under time reversal. Both phenomena are activated by a modest magnetic field, which may open doors for their potential applications in polarization-independent optical isolation and highly efficient polarization control at terahertz frequencies.

     
    more » « less
  2. The interplay of charge, spin, lattice, and orbital degrees of freedom in correlated materials often leads to rich and exotic properties. Recent studies have brought new perspectives to bosonic collective excitations in correlated materials. For example, inelastic neutron scattering experiments revealed non-trivial band topology for magnons and spin–orbit excitons (SOEs) in a quantum magnet CoTiO3(CTO). Here, we report phonon properties resulting from a combination of strong spin–orbit coupling, large crystal field splitting, and trigonal distortion in CTO. Specifically, the interaction between SOEs and phonons endows chirality to twoEgphonon modes and leads to large phonon magnetic moments observed in magneto-Raman spectra. The remarkably strong magneto-phononic effect originates from the hybridization of SOEs and phonons due to their close energy proximity. While chiral phonons have been associated with electronic topology in some materials, our work suggests opportunities may arise by exploring chiral phonons coupled to topological bosons.

     
    more » « less
  3. Utilization of the interaction between spin and heat currents is the central focus of the field of spin caloritronics. Chiral phonons possessing angular momentum arising from the broken symmetry of a non-magnetic material create the potential for generating spin currents at room temperature in response to a thermal gradient, precluding the need for a ferromagnetic contact. Here we show the observation of spin currents generated by chiral phonons in a two-dimensional layered hybrid organic–inorganic perovskite implanted with chiral cations when subjected to a thermal gradient. The generated spin current shows a strong dependence on the chirality of the film and external magnetic fields, of which the coefficient is orders of magnitude larger than that produced by the reported spin Seebeck effect. Our findings indicate the potential of chiral phonons for spin caloritronic applications and offer a new route towards spin generation in the absence of magnetic materials. 
    more » « less
  4. Abstract

    In two-dimensional chiral metal-halide perovskites, chiral organic spacers endow structural and optical chirality to the metal-halide sublattice, enabling exquisite control of light, charge, and electron spin. The chiroptical properties of metal-halide perovskites have been measured by transmissive circular dichroism spectroscopy, which necessitates thin-film samples. Here, by developing a reflection-based approach, we characterize the intrinsic, circular polarization-dependent complex refractive index for a prototypical two-dimensional chiral lead-bromide perovskite and report large circular dichroism for single crystals. Comparison with ab initio theory reveals the large circular dichroism arises from the inorganic sublattice rather than the chiral ligand and is an excitonic phenomenon driven by electron-hole exchange interactions, which breaks the degeneracy of transitions between Rashba-Dresselhaus-split bands, resulting in a Cotton effect. Our study suggests that previous data for spin-coated films largely underestimate the optical chirality and provides quantitative insights into the intrinsic optical properties of chiral perovskites for chiroptical and spintronic applications.

     
    more » « less
  5. Abstract

    Chiral perovskite nanocrystals have emerged as an interesting chiral excitonic platform that combines both structural flexibility and superior optoelectronic properties. Despite several recent demonstrations of optical activity in various chiral perovskite nanocrystals, efficient circularly polarized luminescence (CPL) with tunable energies remains a challenge. The chirality imprinting mechanism as a function of perovskite nanocrystal dimensionality remains elusive. Here, atomically thin inorganic perovskite nanoplatelets (NPLs) are synthesized with precise control of layer thickness and are functionalized by chiral surface ligands, serving as a unique platform to probe the chirality transfer mechanism at the organic/perovskite interface. It is found that chirality is successfully imprinted into mono‐, bi‐, and tri‐layer inorganic perovskite NPLs, exhibiting tunable circular dichroism (CD) and CPL responses. However, chirality transfer decreases in thicker NPLs, resulting in decreased CD and CPL dissymmetry factors for thicker NPLs. Aided by large‐scale first‐principles calculations, it is proposed that chirality transfer is mainly mediated through a surface distortion rather than a hybridization of electronic states, giving rise to symmetry breaking in the perovskite lattice and spin‐split conduction bands. The findings described here provide an in‐depth understanding of chirality transfer and design principles for distorted‐surface perovskites for chiral photonic applications.

     
    more » « less