skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Chiral-phonon-activated spin Seebeck effect
Utilization of the interaction between spin and heat currents is the central focus of the field of spin caloritronics. Chiral phonons possessing angular momentum arising from the broken symmetry of a non-magnetic material create the potential for generating spin currents at room temperature in response to a thermal gradient, precluding the need for a ferromagnetic contact. Here we show the observation of spin currents generated by chiral phonons in a two-dimensional layered hybrid organic–inorganic perovskite implanted with chiral cations when subjected to a thermal gradient. The generated spin current shows a strong dependence on the chirality of the film and external magnetic fields, of which the coefficient is orders of magnitude larger than that produced by the reported spin Seebeck effect. Our findings indicate the potential of chiral phonons for spin caloritronic applications and offer a new route towards spin generation in the absence of magnetic materials.  more » « less
Award ID(s):
1943813
PAR ID:
10397704
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Materials
ISSN:
1476-1122
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The anomalous Hall, Nernst, and thermal Hall coefficients of the itinerant ferromagnet Fe3−xGeTe2 display anomalies upon cooling that are consistent with a topological transition that could induce deviations with respect to the Wiedemann–Franz (WF) law. This law has not yet been validated for the anomalous transport variables, with recent experimental studies yielding material-dependent results. Nevertheless, the anomalous Hall and thermal Hall coefficients of Fe3−xGeTe2 are found, within our experimental accuracy, to satisfy the WF law for magnetic fields μ0H applied along its c axis. Remarkably, large anomalous transport is also observed for μ0H||a axis with the field aligned along the gradient of the chemical potential generated by thermal gradients or electrical currents, a configuration that should not lead to their observation. These anomalous planar quantities are found to not scale with the component of the planar magnetization (M||), showing instead a sharp decrease beyond μ0H||= 4 T or the field required to align the magnetic moments along μ0H||. We argue that chiral spin structures associated with Bloch domain walls lead to a field-dependent spin chirality that produces a novel type of topological transport in the absence of interaction between the magnetic field and electrical or thermal currents. Locally chiral spin structures are captured by our Monte Carlo simulations incorporating small Dzyaloshinskii–Moriya and biquadratic exchange interactions. These observations reveal not only a new way to detect and expose topological excitations, but also a new configuration for heat conversion that expands the current technological horizon for thermoelectric energy applications. 
    more » « less
  2. Time-reversal symmetry (TRS) is pivotal for materials’ optical, magnetic, topological, and transport properties. Chiral phonons, characterized by atoms rotating unidirectionally around their equilibrium positions, generate dynamic lattice structures that break TRS. Here, we report that coherent chiral phonons, driven by circularly polarized terahertz light pulses, polarize the paramagnetic spins in cerium fluoride in a manner similar to that of a quasi-static magnetic field on the order of 1 tesla. Through time-resolved Faraday rotation and Kerr ellipticity, we found that the transient magnetization is only excited by pulses resonant with phonons, proportional to the angular momentum of the phonons, and growing with magnetic susceptibility at cryogenic temperatures. The observation quantitatively agrees with our spin-phonon coupling model and may enable new routes to investigating ultrafast magnetism, energy-efficient spintronics, and nonequilibrium phases of matter with broken TRS. 
    more » « less
  3. A critical spintronics challenge is to develop molecular wires that render efficiently spin-polarized currents. Interplanar torsional twisting, driven by chiral binucleating ligands in highly conjugated molecular wires, gives rise to large near-infrared rotational strengths. The large scalar product of the electric and magnetic dipole transition moments ( μ → i j ⋅ m → i j ), which are evident in the low-energy absorptive manifolds of these wires, makes possible enhanced chirality-induced spin selectivity–derived spin polarization. Magnetic-conductive atomic force microscopy experiments and spin-Hall devices demonstrate that these designs point the way to achieve high spin selectivity and large-magnitude spin currents in chiral materials. 
    more » « less
  4. The nodal-line semiconductor Mn3Si2Te6 is generating enormous excitment due to the recent discovery of a field-driven insulator-to-metal transition and associated colossal magnetoresistance as well as evidence for a new type of quantum state involving chiral orbital currents. Strikingly, these qualities persist even in the absence of traditional Jahn-Teller distortions and double-exchange mechanisms, raising questions about exactly how and why magnetoresistance occurs along with conjecture as to the likely signatures of loop currents. Here, we measured the infrared response of Mn3Si2Te6 across the magnetic ordering and field-induced insulator-to-metal transitions in order to explore colossal magnetoresistance in the absence of Jahn-Teller and double-exchange interactions. Rather than a traditional metal with screened phonons, the field-driven insulator-to-metal transition leads to a weakly metallic state with localized carriers. Our spectral data are fit by a percolation model, providing evidence for electronic inhomogeneity and phase separation. Modeling also reveals a frequency-dependent threshold field for carriers contributing to colossal magnetoresistance which we discuss in terms of polaron formation, chiral orbital currents, and short-range spin fluctuations. These findings enhance the understanding of insulator-to-metal transitions in new settings and open the door to the design of unconventional colossal magnetoresistant materials. 
    more » « less
  5. The interplay of charge, spin, lattice, and orbital degrees of freedom in correlated materials often leads to rich and exotic properties. Recent studies have brought new perspectives to bosonic collective excitations in correlated materials. For example, inelastic neutron scattering experiments revealed non-trivial band topology for magnons and spin–orbit excitons (SOEs) in a quantum magnet CoTiO3(CTO). Here, we report phonon properties resulting from a combination of strong spin–orbit coupling, large crystal field splitting, and trigonal distortion in CTO. Specifically, the interaction between SOEs and phonons endows chirality to two E g phonon modes and leads to large phonon magnetic moments observed in magneto-Raman spectra. The remarkably strong magneto-phononic effect originates from the hybridization of SOEs and phonons due to their close energy proximity. While chiral phonons have been associated with electronic topology in some materials, our work suggests opportunities may arise by exploring chiral phonons coupled to topological bosons. 
    more » « less