skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Probing Massive Star Nucleosynthesis with Data on Metal-Poor Stars and the Solar System
Metal-poor stars were formed during the early epochs when only massive stars had time to evolve and contribute to the chemical enrichment. Low-mass metal-poor stars survive until the present and provide fossil records of the nucleosynthesis of early massive stars. On the other hand, short-lived radionuclides (SLRs) in the early solar system (ESS) reflect the nucleosynthesis of sources that occurred close to the proto-solar cloud in both space and time. Both the ubiquity of Sr and Ba and the diversity of heavy-element abundance patterns observed in single metal-poor stars suggest that some neutron-capture mechanisms other than the r -process might have operated in early massive stars. Three such mechanisms are discussed: the weak s -process in non-rotating models with initial carbon enhancement, a new s -process induced by rapid rotation in models with normal initial composition, and neutron-capture processes induced by proton ingestion in non-rotating models. In addition, meteoritic data are discussed to constrain the core-collapse supernova (CCSN) that might have triggered the formation of the solar system and provided some of the SLRs in the ESS. If there was a CCSN trigger, the data point to a low-mass CCSN as the most likely candidate. An 11.8 M ⊙ CCSN trigger is discussed. Its nucleosynthesis, the evolution of its remnant, and the interaction of the remnant with the proto-solar cloud appear to satisfy the meteoritic constraints and can account for the abundances of the SLRs 41 Ca, 53 Mn, and 60 Fe in the ESS.  more » « less
Award ID(s):
2020275
NSF-PAR ID:
10332062
Author(s) / Creator(s):
Editor(s):
Liu, W.; Wang, Y.; Guo, B.; Tang, X.; Zeng, S.
Date Published:
Journal Name:
EPJ Web of Conferences
Volume:
260
ISSN:
2100-014X
Page Range / eLocation ID:
09001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Analysis of inclusions in primitive meteorites reveals that several short-lived radionuclides (SLRs) with half-lives of 0.1–100 Myr existed in the early solar system (ESS). We investigate the ESS origin of107Pd,135Cs, and182Hf, which are produced byslowneutron captures (thes-process) in asymptotic giant branch (AGB) stars. We modeled the Galactic abundances of these SLRs using theOMEGA+galactic chemical evolution (GCE) code and two sets of mass- and metallicity-dependent AGB nucleosynthesis yields (Monash and FRUITY). Depending on the ratio of the mean-lifeτof the SLR to the average length of time between the formations of AGB progenitorsγ, we calculate timescales relevant for the birth of the Sun. Ifτ/γ≳ 2, we predict self-consistent isolation times between 9 and 26 Myr by decaying the GCE predicted107Pd/108Pd,135Cs/133Cs, and182Hf/180Hf ratios to their respective ESS ratios. The predicted107Pd/182Hf ratio indicates that our GCE models are missing 9%–73% of107Pd and108Pd in the ESS. This missing component may have come from AGB stars of higher metallicity than those that contributed to the ESS in our GCE code. Ifτ/γ≲ 0.3, we calculate instead the time (TLE) from the last nucleosynthesis event that added the SLRs into the presolar matter to the formation of the oldest solids in the ESS. For the 2M,Z= 0.01 Monash model we find a self-consistent solution ofTLE= 25.5 Myr.

     
    more » « less
  2. We investigate the origin in the early Solar System of the short-lived radionuclide 244Pu (with a half life of 80 Myr) produced by the rapid (r) neutron-capture process. We consider two large sets of r-process nucleosynthesis models and analyse if the origin of 244Pu in the ESS is consistent with that of the other r and slow (s) neutron-capture process radioactive nuclei. Uncertainties on the r-process models come from both the nuclear physics input and the astrophysical site. The former strongly affects the ratios of isotopes of close mass (129I/127I, 244Pu/238U, and 247Pu/235U). The 129I/247Cm ratio, instead, which involves isotopes of a very different mass, is much more variable than those listed above and is more affected by the physics of the astrophysical site. We consider possible scenarios for the evolution of the abundances of these radioactive nuclei in the galactic interstellar medium and verify under which scenarios and conditions solutions can be found for the origin of 244Pu that are consistent with the origin of the other isotopes. Solutions are generally found for all the possible different regimes controlled by the interval (δ) between additions from the source to the parcel of interstellar medium gas that ended up in the Solar System, relative to decay timescales. If r-process ejecta in interstellar medium are mixed within a relatively small area (leading to a long δ), we derive that the last event that explains the 129I and 247Cm abundances in the early Solar System can also account for the abundance of 244Pu. Due to its longer half life, however, 244Pu may have originated from a few events instead of one only. If r-process ejecta in interstellar medium are mixed within a relatively large area (leading to a short δ), we derive that the time elapsed from the formation of the molecular cloud to the formation of the Sun was 9-16 Myr. 
    more » « less
  3. Abstract The radioisotope 26 Al is a key observable for nucleosynthesis in the Galaxy and the environment of the early Solar System. To properly interpret the large variety of astronomical and meteoritic data, it is crucial to understand both the nuclear reactions involved in the production of 26 Al in the relevant stellar sites and the physics of such sites. These range from the winds of low- and intermediate-mass asymptotic giant branch stars; to massive and very massive stars, both their Wolf–Rayet winds and their final core-collapse supernovae (CCSN); and the ejecta from novae, the explosions that occur on the surface of a white dwarf accreting material from a stellar companion. Several reactions affect the production of 26 Al in these astrophysical objects, including (but not limited to) 25 Mg( p , γ ) 26 Al, 26 Al( p , γ ) 27 Si, and 26 Al( n , p / α ). Extensive experimental effort has been spent during recent years to improve our understanding of such key reactions. Here we present a summary of the astrophysical motivation for the study of 26 Al, a review of its production in the different stellar sites, and a timely evaluation of the currently available nuclear data. We also provide recommendations for the nuclear input into stellar models and suggest relevant, future experimental work. 
    more » « less
  4. ABSTRACT

    We present a detailed chemical abundance and kinematic analysis of six extremely metal-poor (−4.2 ≤ [Fe/H] ≤−2.9) halo stars with very low neutron-capture abundances ([Sr/H] and [Ba/H]) based on high-resolution Magellan/MIKE spectra. Three of our stars have [Sr/Ba] and [Sr/H] ratios that resemble those of metal-poor stars in ultra-faint dwarf galaxies (UFDs). Since early UFDs may be the building blocks of the Milky Way, extremely metal-poor halo stars with low, UFD-like Sr and Ba abundances may thus be ancient stars from the earliest small galactic systems that were accreted by the proto-Milky Way. We label these objects as Small Accreted Stellar System (SASS) stars, and we find an additional 61 similar ones in the literature. A kinematic analysis of our sample and literature stars reveals them to be fast-moving halo objects, all with retrograde motion, indicating an accretion origin. Because SASS stars are much brighter than typical UFD stars, identifying them offers promising ways towards detailed studies of early star formation environments. From the chemical abundances of SASS stars, it appears that the earliest accreted systems were likely enriched by a few supernovae whose light element yields varied from system to system. Neutron-capture elements were sparsely produced and/or diluted, with r-process nucleosynthesis playing a role. These insights offer a glimpse into the early formation of the Galaxy. Using neutron-capture elements as a distinguishing criterion for early formation, we have access to a unique metal-poor population that consists of the oldest stars in the universe.

     
    more » « less
  5. Liu, W. ; Wang, Y. ; Guo, B. ; Tang, X. ; Zeng, S. (Ed.)
    Various nucleosynthesis studies have pointed out that the rapid neutron capture r-process elements in very metal-poor (VMP) halo stars might have different origins. It has been known that an r-process can either be obtained in neutron-rich low Ye conditions or in high entropy environments [see e.g. 1–5], an overview over many investigations has appeared recently [6]. In the present article we analyze with statistical methods the observational abundance patterns from trans-Fe elements up to the actinides and come to the conclusion that four to five categories of astrophysical events must have contributed. These include the ejection of Fe and trans-Fe elements Sr, Y, Zr (continuing possibly beyond to slightly higher mass numbers) in category 0 events (hereafter "C0"), Fe and weak r-process contributions (including Eu in moderate to slightly larger but varying amounts) in CI and CII events, strong r-process abundance patterns with no or negligible (in comparison to solar) Fe production in CIIIa and CIIIb events, where category CIIIb shows a tendency for an actinide boost behavior. When comparing these categories with presently existing nucleosynthesis predictions, we suggest to identify them (despite remaining uncertainties) with regular core-collapse supernovae, quark deconfinement supernovae, magneto-rotational supernovae, neutron star mergers, and outflows from black hole accretion tori. 
    more » « less