skip to main content


Title: A Weak Temperature Gradient Framework to Quantify the Causes of Potential Intensity Variability in the Tropics
Abstract Potential intensity (PI) has been shown to have a linear sensitivity to sea surface temperature (SST) of about 8 m s −1 K −1 , which is close to the sensitivity of PI in simulations subject to a weak temperature gradient (WTG) approximation. This suggests that most of the PI variance is associated with local rather than global SST variations. We verify that PI perturbations are approximately linear in SST, with slopes of 1.8 ± 0.2 m s −1 K −1 in radiative–convective equilibrium (RCE) and 9.1 ± 0.9 m s −1 K −1 in WTG. To do so, we simulate the sensitivity of both RCE and WTG states in a single-column model (SCM) perturbed by changing in turn CO 2 concentration, aerosol concentrations, prescribed SST, and surface winds speeds. While PI is much more sensitive to SST in WTG than in RCE simulations, the SST itself is much less sensitive to radiative forcing in WTG than in RCE because of the absence of strong atmospheric response. Using these results, we develop a linear model, based on SST and midlevel saturation MSE perturbations, to partition SST and PI perturbations between local components occurring under a WTG constraint and global components that are representative of an RCE state. This model explains up to 95% of the variability of PI in reanalysis. The SCM-derived linear model coefficients are statistically indistinguishable from coefficients from a linear fit of reanalysis PI to SST and midlevel saturation MSE in most ocean basins. Our model shows that North Atlantic PI variations are explained almost entirely by local forcings in recent decades.  more » « less
Award ID(s):
1906768
PAR ID:
10332149
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Climate
Volume:
34
Issue:
21
ISSN:
0894-8755
Page Range / eLocation ID:
8669 to 8682
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract An effective method to understand cloud processes and to assess the fidelity with which they are represented in climate models is the cloud controlling factor framework, in which cloud properties are linked with variations in large-scale dynamical and thermodynamical variables. This study examines how midlatitude cloud radiative effects (CRE) over oceans co-vary with four cloud controlling factors: mid-tropospheric vertical velocity, estimated inversion strength (EIS), near-surface temperature advection, and sea surface temperature (SST), and assesses their representation in CMIP6 models with respect to observations and CMIP5 models. CMIP5 and CMIP6 models overestimate the sensitivity of midlatitude CRE to perturbations in vertical velocity, and underestimate the sensitivity of midlatitude shortwave CRE to perturbations in EIS and temperature advection. The largest improvement in CMIP6 models is a reduced sensitivity of CRE to vertical velocity perturbations. As in CMIP5 models, many CMIP6 models simulate a shortwave cloud radiative warming effect associated with a poleward shift in the Southern Hemisphere (SH) midlatitude jet stream, an effect not present in observations. This bias arises because most models’ shortwave CRE are too sensitive to vertical velocity perturbations and not sensitive enough to EIS perturbations, and because most models overestimate the SST anomalies associated with SH jet shifts. The presence of this bias directly impacts the transient surface temperature response to increasing greenhouse gases over the Southern Ocean, but not the global-mean surface temperature. Instead, the models’ climate sensitivity is correlated with their shortwave CRE sensitivity to surface temperature advection perturbations near 40°S, with models with more realistic values of temperature advection sensitivity generally having higher climate sensitivity. 
    more » « less
  2. Abstract

    While many modeling studies have attempted to estimate how tropical cyclone (TC) precipitation is impacted by climate change, the multitude of analysis techniques and methodologies have resulted in varying conclusions. Simplified models may be able to help overcome this problem. Radiative‐convective equilibrium (RCE) model simulations have been used in various configurations to study fundamental aspects of Earth's climate. While many RCE modeling studies have focused on TC genesis, intensification, and size, limited work has been done using RCE to study TC precipitation. In this study, the response of TC precipitation to sea surface temperature (SST) change is analyzed in global Community Atmosphere Model (CAM) aquaplanet simulations run with Radiative‐Convective Equilibrium Model Intercomparison Project protocols, with the addition of planetary rotation. We expect that the insight gained about how TC precipitation responds to SST warming will help predict how TCs in the real world respond to climate change. In the CAM RCE simulations, the warmer SST simulations have less TCs on average, but the TCs tend to be larger in outer size and more intense. As simulation SST increases, more extreme precipitation rates occur within TCs, and more of the TC precipitation comes from these extreme rates. For extreme (99th percentile) TC precipitation, SST, and TC intensity increases dominate the 8.6% per K increase, while TC outer size changes have little impact. For accumulated TC precipitation, SST, and TC intensity contributions are still the majority, but TC outer size changes also contribute to the 6.6% per K increase.

     
    more » « less
  3. While the zonal-mean position of the intertropical convergence zone (ITCZ) is well explained using the zonal-mean energetic framework, the regional variations of the ITCZ have been more difficult to characterize. We show a simple metric, the interhemispheric tropical sea surface temperature (SST) contrast, is useful for estimating the local ITCZ position over seasonal and interannual timescales in modern observations. We demonstrate a linear correspondence between the SST contrast and ITCZ position across oceanic sectors. Though consistently linear, the sensitivity of the ITCZ position to the SST contrast varies from ~1°/K to ~7°/K depending on location. We also find that the location of the Western Pacific interannual ITCZ is negatively correlated with the temperature of the North Atlantic Ocean. This result may help put constraints on past and future regional migrations of the ITCZ. 
    more » « less
  4. Abstract

    We investigate the dependence of radiative feedback on the pattern of sea‐surface temperature (SST) change in 14 Atmospheric General Circulation Models (AGCMs) forced with observed variations in SST and sea‐ice over the historical record from 1871 to near‐present. We find that over 1871–1980, the Earth warmed with feedbacks largely consistent and strongly correlated with long‐term climate sensitivity feedbacks (diagnosed from corresponding atmosphere‐ocean GCMabrupt‐4xCO2simulations). Post 1980, however, the Earth warmed with unusual trends in tropical Pacific SSTs (enhanced warming in the west, cooling in the east) and cooling in the Southern Ocean that drove climate feedback to be uncorrelated with—and indicating much lower climate sensitivity than—that expected for long‐term CO2increase. We show that these conclusions are not strongly dependent on the Atmospheric Model Intercomparison Project (AMIP) II SST data set used to force the AGCMs, though the magnitude of feedback post 1980 is generally smaller in nine AGCMs forced with alternative HadISST1 SST boundary conditions. We quantify a “pattern effect” (defined as the difference between historical and long‐term CO2feedback) equal to 0.48 ± 0.47 [5%–95%] W m−2 K−1for the time‐period 1871–2010 when the AGCMs are forced with HadISST1 SSTs, or 0.70 ± 0.47 [5%–95%] W m−2 K−1when forced with AMIP II SSTs. Assessed changes in the Earth's historical energy budget agree with the AGCM feedback estimates. Furthermore satellite observations of changes in top‐of‐atmosphere radiative fluxes since 1985 suggest that the pattern effect was particularly strong over recent decades but may be waning post 2014.

     
    more » « less
  5. Abstract

    In a modeled environment of rotating radiative‐convective equilibrium (RCE), convective self‐aggregation may take the form of spontaneous tropical cyclogenesis. We investigate the processes leading to tropical cyclogenesis in idealized simulations with a three‐dimensional cloud‐permitting model configured in rotating RCE, in which the background planetary vorticity is varied acrossf‐plane cases to represent a range of deep tropical and near‐equatorial environments. Convection is initialized randomly in an otherwise homogeneous environment, with no background wind, precursor disturbance, or other synoptic‐scale forcing. We examine the dynamic and thermodynamic evolution of cyclogenesis in these experiments and compare the physical mechanisms to current theories. All simulations with planetary vorticity corresponding to latitudes from 10°–20° generate intense tropical cyclones, with maximum wind speeds of 80 m s−1or above. Time to genesis varies widely, even within a five‐member ensemble of 20° simulations, indicating large stochastic variability. Shared across the 10°–20° group is the emergence of a midlevel vortex in the days leading to genesis, which has dynamic and thermodynamic implications on its environment that facilitate the spin‐up of a low‐level vortex. Tropical cyclogenesis is possible in this model at values of Coriolis parameter as low as that representative of 1°. In these experiments, convection self‐aggregates into a quasicircular cluster, which then begins to rotate and gradually strengthen into a tropical storm, aided by strong near‐surface inflow that is already established days prior. Other experiments at these lower Coriolis parameters instead self‐aggregate into a nonrotating elongated band and fail to undergo cyclogenesis over the 100‐day simulation.

     
    more » « less