skip to main content


Title: Two-Dimensional and Three-Dimensional Ultrathin Multilayer Hydrogels through Layer-by-Layer Assembly
Stimuli-responsive multilayer hydrogels have opened new opportunities to design hierarchically organized networks with properties controlled at the nanoscale. These multilayer materials integrate structural, morphological, and compositional versatility provided by alternating layer-bylayer polymer deposition with the capability for dramatic and reversible changes in volumes upon environmental triggers, a characteristic of chemically crosslinked responsive networks. Despite their intriguing potential, there has been limited knowledge about the structure−property relationships of multilayer hydrogels, partly because of the challenges in regulating network structural organization and the limited set of the instrumental pool to resolve structure and properties at nanometer spatial resolution. This Feature Article highlights our recent studies on advancing assembly technologies, fundamentals, and applications of multilayer hydrogels. The fundamental relationships among synthetic strategies, chemical compositions, and hydrogel architectures are discussed, and their impacts on stimuli-induced volume changes, morphology, and mechanical responses are presented. We present an overview of our studies on thin multilayer hydrogel coatings, focusing on controlling and quantifying the degree of layer intermixing, which are crucial issues in the design of hydrogels with predictable properties. We also uncover the behavior of stratified “multicompartment” hydrogels in response to changes in pH and temperature. We summarize the mechanical responses of free-standing multilayer hydrogels, including planar thin coatings and films with closed geometries such as hollow microcapsules and nonhollow hydrogel microparticles with spherical and nonspherical shapes. Finally, we will showcase potential applications of pH- and temperature-sensitive multilayer hydrogels in sensing and drug delivery. The knowledge about multilayer hydrogels can advance the rational design of polymer networks with predictable and well-tunable properties, contributing to modern polymer science and broadening hydrogel applications.  more » « less
Award ID(s):
1904816
NSF-PAR ID:
10332173
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Langmuir
ISSN:
0743-7463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Shape morphing of stimuli‐responsive composite hydrogels has received considerable attention in different research fields. Although various multilayer structures with dissimilar materials are studied to achieve shape morphing, combining swellable hydrogel layers with non‐swellable layers results in issues with interface adhesion and structural integrity. In this study, single‐hydrogel‐based bilayer actuators comprising poly(N‐isopropylacrylamide) (PNIPAM) matrices and graphene oxide (GO)–PNIPAM hinges are presented. Upon temperature rising, the PNIPAM hydrogel acts as the passive layer due to the formation of dense microstructures near the surface (i.e., the skin layer effect), whereas the GO‐PNIPAM hydrogel functions as the active layer, maintaining porous due to structural modification by the presence of GO. Under light exposure, the GO‐PNIPAM hinges experience selective heating due to the photothermal effect of GO. Consequently, the resulting bilayer structures exhibit programmable dual‐responsive 3D shape morphing. Additionally, the folding kinetics of these actuators can be adjusted based on the applied stimulus (temperature changes or light), as they are driven by different mechanisms, the skin layer, or photothermal effects, respectively. Furthermore, the hinge‐based bilayer structures demonstrate walking and steering locomotion by light exposure. This approach can lead to advances in soft robotics, biomimetic systems, and autonomous soft actuators in hydrogel‐based systems.

     
    more » « less
  2. Abstract

    Non‐spherical stimuli‐responsive polymeric particles have shown critical importance in therapeutic delivery. Herein, pH‐responsive poly(methacrylic acid) (PMAA) cubic hydrogel microparticles are synthesized by crosslinking PMAA layers within PMAA/poly(N‐vinylpyrrolidone) hydrogen‐bonded multilayers templated on porous inorganic microparticles. This study investigates the effects of template porosity and surface morphology on the PMAA multilayer hydrogel microcube properties. It is found that the hydrogel structure depends on the template's calcination time and temperature. The pH‐triggered PMAA hydrogel cube swelling depends on the hydrogel's internal architecture, either hollow capsule‐like or non‐hollow continuous hydrogels. The loading efficiency of the doxorubicin (DOX) drug inside the microcubes is analyzed by high‐performance liquid chromatography (HPLC), and shows the dependenceof the drug uptake on the network structure and morphology controlled by the template porosity. Varying the template calcination from low (300 °C) to high (1000 °C) temperature results in a 2.5‐fold greater DOX encapsulation by the hydrogel cubes. The effects of hydrogel surface charge on the DOX loading and release are also studied using zeta‐potential measurements. This work provides insight into the effect of structural composition, network morphology, and pH‐induced swelling of the cubical hydrogels and may advance the development of stimuli‐responsive vehicles for targeted anticancer drug delivery.

     
    more » « less
  3. Abstract

    New fluorochromic materials that reversibly change their emission properties in response to their environment are of interest for the development of sensors and light‐emitting materials. A new design of Eu‐containing polymer hydrogels showing fast self‐healing and tunable fluorochromic properties in response to five different stimuli, including pH, temperature, metal ions, sonication, and force, is reported. The polymer hydrogels are fabricated using Eu–iminodiacetate (IDA) coordination in a hydrophilic poly(N,N‐dimethylacrylamide) matrix. Dynamic metal–ligand coordination allows reversible formation and disruption of hydrogel networks under various stimuli which makes hydrogels self‐healable and injectable. Such hydrogels show interesting switchable ON/OFF luminescence along with the sol–gel transition through the reversible formation and dissociation of Eu–IDA complexes upon various stimuli. It is demonstrated that Eu‐containing hydrogels display fast and reversible mechanochromic response as well in hydrogels having interpenetrating polymer network. Those multistimuli responsive fluorochromic hydrogels illustrate a new pathway to make smart optical materials, particularly for biological sensors where multistimuli response is required.

     
    more » « less
  4. Hydrogels are soft hydrated polymer networks that are widely used in research and industry due to their favorable properties and similarity to biological tissues. However, it has long been difficult to create a hydrogel emulating the heterogeneous structure of special tissues, such as cartilage. One potential avenue to develop a structural variation in a hydrogel is the “mold effect,” which has only recently been discovered to be caused by absorbed oxygen within the mold surface interfering with the polymerization. This induces a dilute gradient-density surface layer with altered properties. However, the precise structure of the gradient-surface layer and its contact response have not yet been characterized. Such knowledge would prove useful for designs of composite hydrogels with altered surface characteristics. To fully characterize the hydrogel gradient-surface layer, we created five hydrogel compositions of varying monomer and cross-linker content to encompass variations in the layer. Then, we used particle exclusion microscopy during indentation and creep experiments to probe the contact response of the gradient layer of each composition. These experiments showed that the dilute structure of the gradient layer follows evolving contact behavior allowing poroelastic squeeze-out at miniscule pressures. Stiffer compositions had thinner gradient layers. This knowledge can potentially be used to create hydrogels with a stiff load-bearing bulk with altered surface characteristics tailored for specific tribological applications.

     
    more » « less
  5. A newly developed polyacrylamide‐co‐methyl acrylate/spiropyran (SP) hydrogel crosslinked by SP mechanophore demonstrates multi‐stimuli‐responsive and mechanically strong properties. The hydrogels not only exhibit thermo‐, photo‐, and mechano‐induced color changes, but also achieve super‐strong mechanical properties (tensile stress of 1.45 MPa, tensile strain of ≈600%, and fracture energy of 7300 J m−2). Due to a reversible structural transformation between spiropyran (a ring‐close) and merocyanine (a ring‐open) states, simple exposure of the hydrogels to white light can reverse color changes and restore mechanical properties. The new design approach for a new mechanoresponsive hydrogel is easily transformative to the development of other mechanophore‐based hydrogels for sensing, imaging, and display applications.

     
    more » « less