skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Two-Dimensional and Three-Dimensional Ultrathin Multilayer Hydrogels through Layer-by-Layer Assembly
Stimuli-responsive multilayer hydrogels have opened new opportunities to design hierarchically organized networks with properties controlled at the nanoscale. These multilayer materials integrate structural, morphological, and compositional versatility provided by alternating layer-bylayer polymer deposition with the capability for dramatic and reversible changes in volumes upon environmental triggers, a characteristic of chemically crosslinked responsive networks. Despite their intriguing potential, there has been limited knowledge about the structure−property relationships of multilayer hydrogels, partly because of the challenges in regulating network structural organization and the limited set of the instrumental pool to resolve structure and properties at nanometer spatial resolution. This Feature Article highlights our recent studies on advancing assembly technologies, fundamentals, and applications of multilayer hydrogels. The fundamental relationships among synthetic strategies, chemical compositions, and hydrogel architectures are discussed, and their impacts on stimuli-induced volume changes, morphology, and mechanical responses are presented. We present an overview of our studies on thin multilayer hydrogel coatings, focusing on controlling and quantifying the degree of layer intermixing, which are crucial issues in the design of hydrogels with predictable properties. We also uncover the behavior of stratified “multicompartment” hydrogels in response to changes in pH and temperature. We summarize the mechanical responses of free-standing multilayer hydrogels, including planar thin coatings and films with closed geometries such as hollow microcapsules and nonhollow hydrogel microparticles with spherical and nonspherical shapes. Finally, we will showcase potential applications of pH- and temperature-sensitive multilayer hydrogels in sensing and drug delivery. The knowledge about multilayer hydrogels can advance the rational design of polymer networks with predictable and well-tunable properties, contributing to modern polymer science and broadening hydrogel applications.  more » « less
Award ID(s):
1904816
PAR ID:
10332173
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Langmuir
ISSN:
0743-7463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract New fluorochromic materials that reversibly change their emission properties in response to their environment are of interest for the development of sensors and light‐emitting materials. A new design of Eu‐containing polymer hydrogels showing fast self‐healing and tunable fluorochromic properties in response to five different stimuli, including pH, temperature, metal ions, sonication, and force, is reported. The polymer hydrogels are fabricated using Eu–iminodiacetate (IDA) coordination in a hydrophilic poly(N,N‐dimethylacrylamide) matrix. Dynamic metal–ligand coordination allows reversible formation and disruption of hydrogel networks under various stimuli which makes hydrogels self‐healable and injectable. Such hydrogels show interesting switchable ON/OFF luminescence along with the sol–gel transition through the reversible formation and dissociation of Eu–IDA complexes upon various stimuli. It is demonstrated that Eu‐containing hydrogels display fast and reversible mechanochromic response as well in hydrogels having interpenetrating polymer network. Those multistimuli responsive fluorochromic hydrogels illustrate a new pathway to make smart optical materials, particularly for biological sensors where multistimuli response is required. 
    more » « less
  2. Stimuli-responsive hydrogels with self-strengthening properties are promising for the use of autonomous growth and adaptation systems to the surrounding environments by mimicking biological materials. However, conventional stimuli-responsive hydrogels require structural destruction to initiate mechanochemical reactions to grow new polymeric networks and strengthen themselves. Here we report continuous self-strengthening of a nanocomposite hydrogel composed of poly( N -isopropylacrylamide) (PNIPAM) and nanoclay (NC) by using external stimuli such as heat and ionic strength. The internal structures of the NC-PNIPAM hydrogel are rearranged through the swelling–deswelling cycles or immersing in a salt solution, thus its mechanical properties are significantly improved. The effects of concentration of NC in hydrogels, number of swelling–deswelling cycles, and presence of salt in the surrounding environment on the mechanical properties of hydrogels are characterized by nanoindentation and tensile tests. The self-strengthening mechanical performance of the hydrogels is demonstrated by the loading ability. This work may offer promise for applications such as artificial muscles and soft robotics. 
    more » « less
  3. Abstract We developed the dynamic assembly of the hydrogen‐bonded multilayers of (poly(N‐vinylpyrrolidone/poly(methacrylic acid)) (PVPON/PMAA)) and compared their properties to the static multilayers. We found that dynamic multilayers, wherein a planar substrate is shaken during polymer adsorption, leads to a 15‐time faster deposition of the planar coatings. The thicknesses and roughness of the dynamic coatings were found to be ⁓30% larger than those of static (no shaking) multilayer films as measured by spectroscopic ellipsometry and atomic force microscopy. We examined the film growth, mechanical properties, wettability, hydration, and pH stability of the planar static and dynamic multilayers and demonstrated that these properties were insignificantly affected by the assembly mode. Both static and dynamic coatings produced microporous films when exposed to pH = 5.9, close to the film critical dissolution pH = 6. We discovered that during the release of the multilayer films into a solution to produce free‐standing films either as planar membranes or multilayer capsule shells, the molecular chain rearrangements result in the decreased roughness for both static and dynamic multilayers and lead to a decreased thickness of the dynamic multilayers. Our findings can help develop a rapid synthesis of thicker nanostructured polymer coatings for sensing and controlled delivery applications. 
    more » « less
  4. Mechanical stimuli such as strain, force, and pressure are pervasive within and beyond the human body. Mechanoresponsive hydrogels have been engineered to undergo changes in their physicochemical or mechanical properties in response to such stimuli. Relevant responses can include strain-stiffening, self-healing, strain-dependent stress relaxation, and shear rate-dependent viscosity. These features are a direct result of dynamic bonds or non- covalent/physical interactions within such hydrogels. The contributions of various types of bonds and intermolecular interactions to these behaviors are important to more fully understand the resulting materials and engineer their mechanoresponsive features. Here, strain-stiffening in carboxymethylcellulose hydrogels crosslinked with pendant dynamic-covalent boronate esters using tannic acid is studied and modulated as a function of polymer concentration, temperature, and effective crosslink density. Furthermore, these materials are found to exhibit self-healing and strain- memory, as well as strain-dependent stress relaxation and shear rate-dependent changes in gel viscosity. These features are attributed to the dynamic nature of the boronate ester crosslinks, inter-chain hydrogen bonding and bundling, or a combination of these two intermolecular interactions. This work provides insight into the interplay of such interactions in the context of mechanoresponsive behaviors, particularly informing the design of hydrogels with tunable strain- stiffening. The multi-responsive and tunable nature of this hydrogel system therefore presents a promising platform for a variety of applications. 
    more » « less
  5. Abstract Non‐spherical stimuli‐responsive polymeric particles have shown critical importance in therapeutic delivery. Herein, pH‐responsive poly(methacrylic acid) (PMAA) cubic hydrogel microparticles are synthesized by crosslinking PMAA layers within PMAA/poly(N‐vinylpyrrolidone) hydrogen‐bonded multilayers templated on porous inorganic microparticles. This study investigates the effects of template porosity and surface morphology on the PMAA multilayer hydrogel microcube properties. It is found that the hydrogel structure depends on the template's calcination time and temperature. The pH‐triggered PMAA hydrogel cube swelling depends on the hydrogel's internal architecture, either hollow capsule‐like or non‐hollow continuous hydrogels. The loading efficiency of the doxorubicin (DOX) drug inside the microcubes is analyzed by high‐performance liquid chromatography (HPLC), and shows the dependenceof the drug uptake on the network structure and morphology controlled by the template porosity. Varying the template calcination from low (300 °C) to high (1000 °C) temperature results in a 2.5‐fold greater DOX encapsulation by the hydrogel cubes. The effects of hydrogel surface charge on the DOX loading and release are also studied using zeta‐potential measurements. This work provides insight into the effect of structural composition, network morphology, and pH‐induced swelling of the cubical hydrogels and may advance the development of stimuli‐responsive vehicles for targeted anticancer drug delivery. 
    more » « less