skip to main content


Title: An entropy reduction approach to continual testing
SIR (Susceptible, Infected or Recovered) stochastic network models are commonly used to describe the progression of epidemics inside a network. A task of interest in epidemiology is to use these models to estimate the state evolution, both at an individual as well as a population level. In this paper, we propose using continual testing to improve the state estimation at the individual level. Our testing is inspired from entropy reduction principles and requires only a small number of tests.  more » « less
Award ID(s):
1705077 2007714
NSF-PAR ID:
10332234
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the International Symposium on Information Theory (ISIT)
Page Range / eLocation ID:
611 to 616
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The COVID-19 preparedness plans by the Centers for Disease Control and Prevention strongly underscores the need for efficient and effective testing strategies. This, in turn, calls upon the design and development of statistical sampling and testing of COVID-19 strategies. However, the evaluation of operational details requires a detailed representation of human behaviors in epidemic simulation models. Traditional epidemic simulations are mainly based upon system dynamic models, which use differential equations to study macro-level and aggregated behaviors of population subgroups. As such, individual behaviors (e.g., personal protection, commute conditions, social patterns) can’t be adequately modeled and tracked for the evaluation of health policies and action strategies. Therefore, this paper presents a network-based simulation model to optimize COVID-19 testing strategies for effective identifications of virus carriers in a spatial area. Specifically, we design a data-driven risk scoring system for statistical sampling and testing of COVID-19. This system collects real-time data from simulated networked behaviors of individuals in the spatial network to support decision-making during the virus spread process. Experimental results showed that this framework has superior performance in optimizing COVID-19 testing decisions and effectively identifying virus carriers from the population. 
    more » « less
  2. Abstract Sustained attention is a critical cognitive function reflected in an individual’s whole-brain pattern of functional magnetic resonance imaging functional connectivity. However, sustained attention is not a purely static trait. Rather, attention waxes and wanes over time. Do functional brain networks that underlie individual differences in sustained attention also underlie changes in attentional state? To investigate, we replicate the finding that a validated connectome-based model of individual differences in sustained attention tracks pharmacologically induced changes in attentional state. Specifically, preregistered analyses revealed that participants exhibited functional connectivity signatures of stronger attention when awake than when under deep sedation with the anesthetic agent propofol. Furthermore, this effect was relatively selective to the predefined sustained attention networks: propofol administration modulated strength of the sustained attention networks more than it modulated strength of canonical resting-state networks and a network defined to predict fluid intelligence, and the functional connections most affected by propofol sedation overlapped with the sustained attention networks. Thus, propofol modulates functional connectivity signatures of sustained attention within individuals. More broadly, these findings underscore the utility of pharmacological intervention in testing both the generalizability and specificity of network-based models of cognitive function. 
    more » « less
  3. Abstract Background Identification of reliable, affordable, and easy-to-use strategies for detection of dementia is sorely needed. Digital technologies, such as individual voice recordings, offer an attractive modality to assess cognition but methods that could automatically analyze such data are not readily available. Methods and findings We used 1264 voice recordings of neuropsychological examinations administered to participants from the Framingham Heart Study (FHS), a community-based longitudinal observational study. The recordings were 73 min in duration, on average, and contained at least two speakers (participant and examiner). Of the total voice recordings, 483 were of participants with normal cognition (NC), 451 recordings were of participants with mild cognitive impairment (MCI), and 330 were of participants with dementia (DE). We developed two deep learning models (a two-level long short-term memory (LSTM) network and a convolutional neural network (CNN)), which used the audio recordings to classify if the recording included a participant with only NC or only DE and to differentiate between recordings corresponding to those that had DE from those who did not have DE (i.e., NDE (NC+MCI)). Based on 5-fold cross-validation, the LSTM model achieved a mean (±std) area under the receiver operating characteristic curve (AUC) of 0.740 ± 0.017, mean balanced accuracy of 0.647 ± 0.027, and mean weighted F1 score of 0.596 ± 0.047 in classifying cases with DE from those with NC. The CNN model achieved a mean AUC of 0.805 ± 0.027, mean balanced accuracy of 0.743 ± 0.015, and mean weighted F1 score of 0.742 ± 0.033 in classifying cases with DE from those with NC. For the task related to the classification of participants with DE from NDE, the LSTM model achieved a mean AUC of 0.734 ± 0.014, mean balanced accuracy of 0.675 ± 0.013, and mean weighted F1 score of 0.671 ± 0.015. The CNN model achieved a mean AUC of 0.746 ± 0.021, mean balanced accuracy of 0.652 ± 0.020, and mean weighted F1 score of 0.635 ± 0.031 in classifying cases with DE from those who were NDE. Conclusion This proof-of-concept study demonstrates that automated deep learning-driven processing of audio recordings of neuropsychological testing performed on individuals recruited within a community cohort setting can facilitate dementia screening. 
    more » « less
  4. The study of individual behavioral variation, sometimes called animal personalities or behavioral types, is now a well-established area of research in behavioral ecology and evolution. Considerable theoretical work has developed predictions about its ecological and evolutionary causes and consequences, and studies testing these theories continue to grow. Here, we synthesize the current empirical work to shed light on which theories are well supported and which need further refinement. We find that the major frameworks explaining the existence of individual behavioral variation, the pace-of-life syndrome hypothesis and state-dependent feedbacks models, have mixed support. The consequences of individual behavioral variation are well studied at the individual level but less is known about consequences at higher levels such as among species and communities. The focus of this review is to reevaluate and reestablish the foundation of individual behavioral variation research: What do we know? What questions remain? And where are we going next? 
    more » « less
  5. The COVID-19 pandemic represents the most significant public health disaster since the 1918 influenza pandemic. During pandemics such as COVID-19, timely and reliable spatiotemporal forecasting of epidemic dynamics is crucial. Deep learning-based time series models for forecasting have recently gained popularity and have been successfully used for epidemic forecasting. Here we focus on the design and analysis of deep learning-based models for COVID-19 forecasting. We implement multiple recurrent neural network-based deep learning models and combine them using the stacking ensemble technique. In order to incorporate the effects of multiple factors in COVID-19 spread, we consider multiple sources such as COVID-19 confirmed and death case count data and testing data for better predictions. To overcome the sparsity of training data and to address the dynamic correlation of the disease, we propose clustering-based training for high-resolution forecasting. The methods help us to identify the similar trends of certain groups of regions due to various spatio-temporal effects. We examine the proposed method for forecasting weekly COVID-19 new confirmed cases at county-, state-, and country-level. A comprehensive comparison between different time series models in COVID-19 context is conducted and analyzed. The results show that simple deep learning models can achieve comparable or better performance when compared with more complicated models. We are currently integrating our methods as a part of our weekly forecasts that we provide state and federal authorities. 
    more » « less