skip to main content


Title: Probing the nature of donor–acceptor effects in conjugated materials: a joint experimental and computational study of model conjugated oligomers
A series of model oligomers consisting of combinations of a traditional strong donor unit (3,4-ethylenedioxythiophene), a traditional strong acceptor unit (benzo[ c ][1,2,5]thiadiazole), and the ambipolar unit thieno[3,4- b ]pyrazine were synthesized via cross-coupling methods. The prepared oligomers include all six possible dimeric combinations in order to characterize the extent and nature of donor–acceptor effects commonly used in the design of conjugated materials, with particular focus on understanding how the inclusion of ambipolar units influences donor–acceptor frameworks. The full oligomeric series was thoroughly investigated via photophysical and electrochemical studies, in parallel with density functional theory (DFT) calculations, in order to correlate the nature and extent of donor–acceptor effects on both frontier orbital energies and the desired narrowing of the HOMO–LUMO energy gap. The corresponding relationships revealed should then provide a deeper understanding of donor–acceptor interactions and their application to conjugated materials.  more » « less
Award ID(s):
2002877
NSF-PAR ID:
10332271
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
23
Issue:
46
ISSN:
1463-9076
Page Range / eLocation ID:
26534 to 26546
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Conjugated copolymers containing electron donor and acceptor units in their main chain have emerged as promising materials for organic electronic devices due to their tunable optoelectronic properties. Herein, we describe the use of direct arylation polymerization to create a series of fully π-conjugated copolymers containing the highly tailorable purine scaffold as a key design element. To create efficient coupling sites, dihalopurines are flanked by alkylthiophenes to create a monomer that is readily copolymerized with a variety of conjugated comonomers, ranging from electron-donating 3,4-dihydro-2 H -thieno[3,4- b ][1,4]dioxepine to electron-accepting 4,7-bis(5-bromo-3-hexylthiophen-2-yl)benzo[ c ][1,2,5]thiadiazole. The comonomer choice and electronic nature of the purine scaffold allow the photophysical properties of the purine-containing copolymers to be widely varied, with optical bandgaps ranging from 1.96–2.46 eV, and photoluminescent quantum yields as high as ϕ = 0.61. Frontier orbital energy levels determined for the various copolymers using density functional theory tight binding calculations track with experimental results, and the geometric structures of the alkylthiophene-flanked purine monomer and its copolymer are found to be nearly planar. The utility of direct arylation polymerization and intrinsic tailorability of the purine scaffold highlight the potential of these fully conjugated polymers to establish structure–property relationships based on connectivity pattern and comonomer type, which may broadly inform efforts to advance purine-containing conjugated copolymers for various applications. 
    more » « less
  2. Abstract

    A detailed investigation addressing the effects of functionalizing conjugated polymers with oligo(ethylene glycol) (EGn) sidechains on the performance and polymer‐electrolyte compatibility of electrochromic devices (ECDs) is reported. The electrochemistry for a series of donor‐acceptor copolymers having near‐infrared (NIR)‐optical absorption, where the donor fragment is 3,4‐ethylenedioxythiophene (EDOT) or an EGnfunctionalized bithiophene (g2T) and the acceptor fragment is diketopyrrolopyrrole (DPP) functionalized with branched alkyl or EGnsidechains, is extensively probed. ECDs are next fabricated and it is found that EGnsidechain incorporation must be finely balanced to promote polymer‐electrolyte compatibility and provide efficient ion exchange. Proper electrolyte‐cation pairing and polymer structural tuning affords a 2x increase in optical contrast (from 12% to 24%) and >60x reduction in switching time (from 20 to 0.3 s). Atomic force microscopy (AFM)/grazing incidence wide‐angle X‐ray scattering (GIWAXS) characterization of the polymer film morphology/microstructure reveals that an over‐abundance of EGnsidechains generates large polymer crystallites, which can suppress ion exchange. Lastly, time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) indicates sidechain/electrolyte identity does not influence the electrolyte penetration depth into the films, and EGnsidechain inclusion increases electrolyte cation uptake. The material structural design insight and guidelines regarding the polymer‐electrolyte ion insertion/expulsion dynamics reported here should be of significant utility for developing next‐generation mixed ionic‐electronic conducting materials.

     
    more » « less
  3. Abstract

    Conductive polymers largely derive their electronic functionality from chemical doping, processes by which redox and charge‐transfer reactions form mobile carriers. While decades of research have demonstrated fundamentally new technologies that merge the unique functionality of these materials with the chemical versatility of macromolecules, doping and the resultant material properties are not ideal for many applications. Here, it is demonstrated that open‐shell conjugated polymers comprised of alternating cyclopentadithiophene and thiadiazoloquinoxaline units can achieve high electrical conductivities in their native “undoped” form. Spectroscopic, electrochemical, electron paramagnetic resonance, and magnetic susceptibility measurements demonstrate that this donor–acceptor architecture promotes very narrow bandgaps, strong electronic correlations, high‐spin ground states, and long‐range π‐delocalization. A comparative study of structural variants and processing methodologies demonstrates that the conductivity can be tuned up to 8.18 S cm−1. This exceeds other neutral narrow bandgap conjugated polymers, many doped polymers, radical conductors, and is comparable to commercial grades of poly(styrene‐sulfonate)‐doped poly(3,4‐ethylenedioxythiophene). X‐ray and morphological studies trace the high conductivity to rigid backbone conformations emanating from strong π‐interactions and long‐range ordered structures formed through self‐organization that lead to a network of delocalized open‐shell sites in electronic communication. The results offer a new platform for the transport of charge in molecular systems.

     
    more » « less
  4. Abstract

    Donor‐acceptor (D−A) frameworks have been produced via the copolymerization of the strong donor dithieno[3,2‐b:2′,3′‐d]pyrrole (DTP) with ambipolar thieno[3,4‐b]pyrazine (TP) units to generate soluble, processible materials with band gaps as low as 0.8 eV. Optical and electronic characterization of the DTP‐TP copolymers illustrate common misconceptions in the relative contributions of the comonomers to the D‐A framework, as well as highlighting the challenges of minimizing band gap while also retaining desirable frontier orbital energies for application to technological devices.

     
    more » « less
  5. null (Ed.)
    Reported here is the design and synthesis of among the first pyridine terminated acceptor–donor–acceptor–donor–acceptor (A–D–A–D–A) based π-conjugated oligomers, EH_DPP_2T_Pyr ( 1 ), EH_II_2T_Pyr ( 2 ), and EH_II_1T_Pyr ( 3 ). The molecules incorporate thiophenes as electron donors, isoindigo/diketopyrrolopyrrole as electron acceptors, and are capped with pyridine, a weak electron acceptor, on both ends. All target oligomers show attractive photophysical properties, broad absorption in the visible region ( λ max = 636 nm, 575 nm, and 555 nm, for 1 , 2 , and 3 , respectively) and emission which extends to the IR region (emission λ max = 734 nm and 724 for 1 and 2 , respectively). Given the pyridine nitrogens, the optoelectronic properties of the compounds can be further tuned by protonation/metalation. All compounds show a bathochromic shift in visible absorption and fluorescence quenching upon addition of trifluoroacetic acid (TFA). Similar phenomena are observed upon addition of metals with a particularly strong response to Cu 2+ and Pd 2+ as indicated by Stern–Volmer analysis ( e.g. , for Pd 2+ ; K sv = 7.2 × 10 4 M −1 ( λ = 673 nm), 8.5 × 10 4 M −1 ( λ = 500 nm), and 1.1 × 10 5 ( λ = 425 nm) for 1 , 2 , and 3 , respectively). The selective association of the molecules to Cu 2+ and Pd 2+ is further evidenced by a color change easily observed by eye and under UV light, important for potential use in colorimetric sensing. 
    more » « less