skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Density of Compatible Ligands on the Surface of Food Particles Modulates Sorting Efficiency in the Blue Mussel Mytilus edulis
The adhesion between food particles and mucus is a fundamental process in particle sorting in suspension-feeding bivalves that requires specific recognition. Interactions between carbohydrate-binding proteins (lectins) expressed on the feeding organs and carbohydrates present on microbial cell surface can provide this specificity. Microalga cell surface carbohydrates (MCSC) represent unique patterns that can be considered as species-specific fingerprints. In this study, sorting efficiencies in blue mussels Mytilus edulis fed with microalgae having modified MCSC and engineered microspheres coated with target carbohydrates was measured. The nature and quantities of surface carbohydrates required to trigger sorting in mussels was evaluated and the relationship between ligand quantities and sorting efficiency (SE) was determined. Mussels fed with Chlamydomonas which MCSC were blocked with ConA or PEA lectins (affinity to mannose and glucose) led to a significant decrease of the sorting efficiencies, not observed when the lectin UEA (affinity to fucose) was used. The ability of commercial lectins to inhibit sorting was not linear and a threshold was noted between 30 and 45 ug lectins per million algae cells. Further, mussels were fed with microspheres coated with neoglycoproteins. Results showed that glucose-BSA, but not fucose-BSA, has an effect on particle sorting in mussels, and 1.08 x 10 9 molecules of glucose per microspheres, corresponding to a density of 6.99 x 10 6 molecules of glucose per µm 2 , triggers particle selection. These findings support that selection of food particles by mussels rely on the strength of the bond between suspended particle and the mucosal layer that mediate sorting, and that these bonds depend on the quantity of compatible ligands on each particle.  more » « less
Award ID(s):
1656753
PAR ID:
10332425
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in Marine Science
Volume:
9
ISSN:
2296-7745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Suspension-feeding mollusks (e.g., bivalves) play a key role in improving the water quality of coastal environments by filtering out suspended matter from the water column. Microplastics are becoming ubiquitous in the marine environment, so it is important to understand if these particles affect feeding processes of bivalves. Additionally, previous studies regarding the impact of microplastic on bivalve physiology have not independently tested for the effects of surfactants which are often added to commercially available plastic particles to prevent aggregation. We measured the clearance rate of mussels (Mytilus edulis) exposed to one type of microplastic and three common surfactants. Mussels were given a dose of microalgal food (1 x 104 cells/mL) and 10-m polystyrene spheres (Polybead; 1 x 104 beads/mL). Experimental treatments tested were washed microspheres and microspheres coated with each of the following surfactants at a concentration of 2mg/L: triton X-100, benzalkonium chloride, and sodium dodecyl sulfate. These surfactants are nonionic, cationic, and anionic, respectively. Control mussels were given a microalgal diet only (2 x 104 cells/mL). Each mussel was placed in an individual 1-L chamber and exposed to one of the aforementioned treatments. Water samples were taken at the start of the experiment (t=0) and then every 10 minutes for 30 minutes to determine clearance rates. Particle concentrations were measured using an electronic particle counter (Coulter Counter) at an appropriate size range for the algae and microspheres. Our results indicate that microspheres with or without surfactant had no effect on clearance rates of mussel compared to those of the controls. Further, our research suggests that the use of polystyrene microspheres in future experiments without initial washing does not affect the clearance rate of mussels. 
    more » « less
  2. Suspension-feeding mollusks (e.g., bivalves) play a key role in improving the water quality of coastal environments by filtering out suspended matter from the water column. Microplastics are becoming ubiquitous in the marine environment, so it is important to understand if these particles affect feeding processes of bivalves. Additionally, previous studies regarding the impact of microplastic on bivalve physiology have not independently tested for the effects of surfactants which are often added to commercially available plastic particles to prevent aggregation. We measured the clearance rate of mussels (Mytilus edulis) exposed to one type of microplastic and three common surfactants. Mussels were given a dose of microalgal food (1 x 104 cells/mL) and 10-m polystyrene spheres (Polybead; 1 x 104 beads/mL). Experimental treatments tested were washed microspheres and microspheres coated with each of the following surfactants at a concentration of 2mg/L: triton X-100, benzalkonium chloride, and sodium dodecyl sulfate. These surfactants are nonionic, cationic, and anionic, respectively. Control mussels were given a microalgal diet only (2 x 104 cells/mL). Each mussel was placed in an individual 1-L chamber and exposed to one of the aforementioned treatments. Water samples were taken at the start of the experiment (t=0) and then every 10 minutes for 30 minutes to determine clearance rates. Particle concentrations were measured using an electronic particle counter (Coulter Counter) at an appropriate size range for the algae and microspheres. Our results indicate that microspheres with or without surfactant had no effect on clearance rates of mussel compared to those of the controls. Further, our research suggests that the use of polystyrene microspheres in future experiments without initial washing does not affect the clearance rate of mussels. 
    more » « less
  3. null (Ed.)
    ABSTRACT Lectins are a large and diverse group of sugar-binding proteins involved in nonself recognition and cell-to-cell interactions. Suspension-feeding bivalves, such as the oyster Crassostrea virginica, are capable of using these molecules to bind cell surface carbohydrates of food particles, allowing particle capture and selection. The aim of this project was to assess whether the expression of mucosal lectins in C. virginica is constant or changes with the season, and to determine whether lectin expression is linked to environmental parameters and/or internal biological factors (gametogenesis). A total of 130 oysters were placed in submerged cages at a tidal estuary and monitored for changes in lectin gene expression over a 1-year period. In parallel, environmental parameters prevailing at the field site, including seawater physicochemical characteristics (temperature, salinity and dissolved oxygen), particulate organic matter and chlorophyll contents, were also monitored. Throughout the study, oysters were dissected and the gills were collected and used for the assessment of the expression of three different lectin genes (CvML, CvML3914 and CvML3912). Remaining tissues were processed for histology and the classification of the gonad development stage. Results showed that when food is abundant, such as during the spring bloom, lectin gene expressions are low, and inversely lectin levels increase with lower food levels. These findings suggest that oysters increase lectin expression to enhance the capture and ingestion of scarce food, while during spring, enough food is already being ingested and lectins are not needed. Furthermore, results showed that as the energy demands of oysters increase (gonad maturation), lectin gene expressions also increase to enhance selective ingestion of nutritious food particles. This study, therefore, demonstrates the seasonality of lectin gene expression in C. virginica, and suggests that lectin regulation is related to the reproduction process and abundance of high-quality food. 
    more » « less
  4. Small scale contact between a soft, liquid-coated layer and a stiff surface is common in many situations, from synovial fluid on articular cartilage to adhesives in humid environments. Moreover, many model studies on soft adhesive contacts are conducted with soft silicone elastomers, which possess uncrosslinked liquid molecules ( i.e. silicone oil) when the modulus is low. We investigate how the thickness of a silicone oil layer on a soft substrate relates to the indentation depth of glass microspheres in contact with crosslinked PDMS, which have a modulus of <10 kPa. The particles indent into the underlying substrate more as a function of decreasing oil layer thickness. This is due to the presence of the liquid layer at the surface that causes capillary forces to pull down on the particle. A simple model that balances the capillary force of the oil layer and the minimal particle–substrate adhesion with the elastic and surface tension forces from the substrate is proposed to predict the particle indentation depth. 
    more » « less
  5. Hypothesis: Symmetry breaking in an electric field-driven active particle system can be induced by applying a spatially uniform, but temporally non-uniform, alternating current (AC) signal. Regardless of the type of particles exposed to sawtooth AC signals, the unevenly induced polarization of the ionic charge layer leads to a major electrohydrodynamic effect of active propulsion, termed Asymmetric Field Electrophoresis (AFEP). Experiments: Suspensions containing latex microspheres of three sizes, as well as Janus and metal-coated particles were subjected to sawtooth AC signals of varying voltages, frequencies, and time asymmetries. Particle tracking via microscopy was used to analyze their motility as a function of the key parameters. Findings: The particles exhibit field-colinear active propulsion, and the temporal reversal of the AC signal results in a reversal of their direction of motion. The experimental velocity data as a function of field strength, frequency, and signal asymmetry are supported by models of asymmetric ionic concentration-polarization. The direction of particle migration exhibits a size-dependent crossover in the low frequency domain. This enables new approaches for simple and efficient on-chip sorting. Combining AFEP with other AC motility mechanisms, such as induced-charge electrophoresis, allows multiaxial control of particle motion and could enable development of novel AC field-driven active microsystems. 
    more » « less