skip to main content


Title: Capillary-driven indentation of a microparticle into a soft, oil-coated substrate
Small scale contact between a soft, liquid-coated layer and a stiff surface is common in many situations, from synovial fluid on articular cartilage to adhesives in humid environments. Moreover, many model studies on soft adhesive contacts are conducted with soft silicone elastomers, which possess uncrosslinked liquid molecules ( i.e. silicone oil) when the modulus is low. We investigate how the thickness of a silicone oil layer on a soft substrate relates to the indentation depth of glass microspheres in contact with crosslinked PDMS, which have a modulus of <10 kPa. The particles indent into the underlying substrate more as a function of decreasing oil layer thickness. This is due to the presence of the liquid layer at the surface that causes capillary forces to pull down on the particle. A simple model that balances the capillary force of the oil layer and the minimal particle–substrate adhesion with the elastic and surface tension forces from the substrate is proposed to predict the particle indentation depth.  more » « less
Award ID(s):
1825258
PAR ID:
10157771
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Soft Matter
ISSN:
1744-683X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Liquid‐infused silicones are a promising solution for common surface adhesion problems, such as ice accumulation and biofilm formation, yet they generally lack the tunability, mechanical durability and/or longevity essential for industrial applications. Self‐stratifying porous silicones (SPS) infused with compatible silicone oil are developed as a passive strategy to address these shortcomings. Through emulsion templating, porosity is formed in the bulk polymer, providing increased free volume for oil infusion, while a non‐porous skin layer is formed at the surface. The bulk porosity and pore size distribution of SPS are independently controlled by varying water and surfactant concentration respectively, leading to a higher volume of oil infusion and improved oil retention relative to an unmodified silicone. Despite a higher oil loading and bulk porosity, the skin layer provides liquid‐infused SPS with a comparable surface elasticity to liquid‐infused silicones. The potential of liquid‐infused SPS as a nontoxic fouling release coating for marine applications is demonstrated using laboratory assays against a variety of soft and hard fouling organisms.

     
    more » « less
  2. The stiffness in the top surface of many biological entities like cornea or articular cartilage, as well as chemically cross-linked synthetic hydrogels, can be significantly lower or more compliant than the bulk. When such a heterogeneous surface comes into contact, the contacting load is distributed differently from typical contact models. The mechanical response under indentation loading of a surface with a gradient of stiffness is a complex, integrated response that necessarily includes the heterogeneity. In this work, we identify empirical contact models between a rigid indenter and gradient elastic surfaces by numerically simulating quasi-static indentation. Three key case studies revealed the specific ways in which (I) continuous gradients, (II) laminate-layer gradients, and (III) alternating gradients generate new contact mechanics at the shallow-depth limit. Validation of the simulation-generated models was done by micro- and nanoindentation experiments on polyacrylamide samples synthesized to have a softer gradient surface layer. The field of stress and stretch in the subsurface as visualized from the simulations also reveals that the gradient layers become confined, which pushes the stretch fields closer to the surface and radially outward. Thus, contact areas are larger than expected, and average contact pressures are lower than predicted by the Hertz model. The overall findings of this work are new contact models and the mechanisms by which they change. These models allow a more accurate interpretation of the plethora of indentation data on surface gradient soft matter (biological and synthetic) as well as a better prediction of the force response to gradient soft surfaces. This work provides examples of how gradient hydrogel surfaces control the subsurface stress distribution and loading response. 
    more » « less
  3. Adhesives require molecular contact, which is governed by roughness, modulus, and load. Here, we measured adhesion for stiff glassy polymer layers of varying thickness on top of a soft elastomer with rough substrates. We found that a 90-nm-thick PMMA layer on a softer elastic block was sufficient to drop macroscopic adhesion to almost zero during the loading cycle. This drop in adhesion for bilayers follows the modified Persson-Tosatti model, where the elastic energy for conformal contact depends on the thickness and modulus of the bilayer. In contrast, we observed no dependence on thickness of the PMMA layer on the work of adhesion calculated using the pull-off forces. Understanding how mechanical gradients (like bilayers) affect adhesion is critical for areas such as adhesion, friction, and colloidal and granular physics.

    Published by the American Physical Society2024 
    more » « less
  4. Oblique collisions of three solid spheres coated with thin viscous layers are simulated, both to elucidate the interesting physics of the collision outcomes and to lay the groundwork for a new approach to modeling flows of many wet particles. Included in the analysis are fluid viscous and capillary forces, as well as solid contact and friction forces. A novel approach is developed based on a rotating polar coordinate system for each particle pair in near contact, including the possibility that a given particle is in simultaneous contact with both other particles. As the Stokes number (a dimensionless ratio of particle inertia and viscous forces) is increased, the collision outcome progresses from full agglomeration (all three particles sticking together due to viscous and capillary forces) to partial agglomeration (two particles sticking together while the third one separates) to full separation (all three particles separating post-collision). The results are also sensitive to various physical and geometrical properties, such as the ratio of fluid film thickness to particle diameter, the coefficient of friction, and the collision angles.

     
    more » « less
  5. ABSTRACT Being able to estimate tire/rubber friction is very important to tire engineers, materials developers, and pavement engineers. This is because of the need for estimating forces generated at the contact, optimizing tire and vehicle performance, and estimating tire wear. Efficient models for contact area and interfacial separation are key for accurate prediction of friction coefficient. Based on the contact mechanics and surface roughness, various models were developed that can predict real area of contact and penetration depth/interfacial separation. In the present work, we intend to compare the analytical contact mechanics models using experimental results and numerical analysis. Nano-indentation experiments are performed on the rubber compound to obtain penetration depth data. A finite element model of a rubber block in contact with a rough surface was developed and validated using the nano-indentation experimental data. Results for different operating conditions obtained from the developed finite element model are compared with analytical model results, and further model improvements are discussed. 
    more » « less