skip to main content


Title: Batch Active Learning with Graph Neural Networks via Multi-Agent Deep Reinforcement Learning
Graph neural networks (GNNs) have achieved tremendous success in many graph learning tasks such as node classifica- tion, graph classification and link prediction. For the classifi- cation task, GNNs’ performance often highly depends on the number of labeled nodes and thus could be significantly ham- pered due to the expensive annotation cost. The sparse litera- ture on active learning for GNNs has primarily focused on se- lecting only one sample each iteration, which becomes ineffi- cient for large scale datasets. In this paper, we study the batch active learning setting for GNNs where the learning agent can acquire labels of multiple samples at each time. We formu- late batch active learning as a cooperative multi-agent rein- forcement learning problem and present a novel reinforced batch-mode active learning framework (BIGENE). To avoid the combinatorial explosion of the joint action space, we in- troduce a value decomposition method that factorizes the to- tal Q-value into the average of individual Q-values. More- over, we propose a novel multi-agent Q-network consisting of a graph convolutional network (GCN) component and a gated recurrent unit (GRU) component. The GCN compo- nent takes both the informativeness and inter-dependences between nodes into account and the GRU component enables the agent to consider interactions between selected nodes in the same batch. Experimental results on multiple public datasets demonstrate the effectiveness and efficiency of our proposed method.  more » « less
Award ID(s):
1947135 2134079
NSF-PAR ID:
10332501
Author(s) / Creator(s):
Date Published:
Journal Name:
AAAI 2022
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Graph Neural Networks (GNN) offer the powerful approach to node classification in complex networks across many domains including social media, E-commerce, and FinTech. However, recent studies show that GNNs are vulnerable to attacks aimed at adversely impacting their node classification performance. Existing studies of adversarial attacks on GNN focus primarily on manipulating the connectivity between existing nodes, a task that requires greater effort on the part of the attacker in real-world applications. In contrast, it is much more expedient on the part of the attacker to inject adversarial nodes, e.g., fake profiles with forged links, into existing graphs so as to reduce the performance of the GNN in classifying existing nodes. Hence, we consider a novel form of node injection poisoning attacks on graph data. We model the key steps of a node injection attack, e.g., establishing links between the injected adversarial nodes and other nodes, choosing the label of an injected node, etc. by a Markov Decision Process. We propose a novel reinforcement learning method for Node Injection Poisoning Attacks (NIPA), to sequentially modify the labels and links of the injected nodes, without changing the connectivity between existing nodes. Specifically, we introduce a hierarchical Q-learning network to manipulate the labels of the adversarial nodes and their links with other nodes in the graph, and design an appropriate reward function to guide the reinforcement learning agent to reduce the node classification performance of GNN. The results of the experiments show that NIPA is consistently more effective than the baseline node injection attack methods for poisoning graph data on three benchmark datasets. 
    more » « less
  2. Graph neural networks (GNNs) have emerged as a powerful tool for modeling graph data due to their ability to learn a concise representation of the data by integrating the node attributes and link information in a principled fashion. However, despite their promise, there are several practical challenges that must be overcome to effectively use them for node classification problems. In particular, current approaches are vulnerable to different kinds of biases inherent in the graph data. First, if the class distribution is imbalanced, then the GNNs' loss function is biased towards classifying the majority class correctly rather than the minority class, which hurts the performance of the latter class. Second, due to homophily effect, the learned representation and subsequent downstream tasks may favor certain demographic groups over others when applied to social network data. To mitigate such biases, we propose a novel framework called Fairness-Aware Cost Sensitive Graph Convolutional Network (FACS-GCN) for classifying nodes in networks with skewed class distributions. Our approach combines a cost-sensitive exponential loss with an adversarial learning component to alleviate the ill-effects of both biases. The framework employs a stagewise additive modeling approach to ensure there is no significant loss in accuracy when imparting fairness into the GNN. Experimental results on 6 benchmark graph data demonstrate the effectiveness of FACS-GCN against comparable baseline methods in terms of promoting fairness while maintaining a high model accuracy on the majority of the datasets. 
    more » « less
  3. Demeniconi, C. ; Davidson, I (Ed.)
    Many irregular domains such as social networks, financial transactions, neuron connections, and natural language constructs are represented using graph structures. In recent years, a variety of graph neural networks (GNNs) have been successfully applied for representation learning and prediction on such graphs. In many of the real-world applications, the underlying graph changes over time, however, most of the existing GNNs are inadequate for handling such dynamic graphs. In this paper we propose a novel technique for learning embeddings of dynamic graphs using a tensor algebra framework. Our method extends the popular graph convolutional network (GCN) for learning representations of dynamic graphs using the recently proposed tensor M-product technique. Theoretical results presented establish a connection between the proposed tensor approach and spectral convolution of tensors. The proposed method TM-GCN is consistent with the Message Passing Neural Network (MPNN) framework, accounting for both spatial and temporal message passing. Numerical experiments on real-world datasets demonstrate the performance of the proposed method for edge classification and link prediction tasks on dynamic graphs. We also consider an application related to the COVID-19 pandemic, and show how our method can be used for early detection of infected individuals from contact tracing data. 
    more » « less
  4. Most state-of-the-art Graph Neural Networks (GNNs) can be defined as a form of graph convolution which can be realized by message passing between direct neighbors or beyond. To scale such GNNs to large graphs, various neighbor-, layer-, or subgraph-sampling techniques are proposed to alleviate the "neighbor explosion" problem by considering only a small subset of messages passed to the nodes in a mini-batch. However, sampling-based methods are difficult to apply to GNNs that utilize many-hops-away or global context each layer, show unstable performance for different tasks and datasets, and do not speed up model inference. We propose a principled and fundamentally different approach, VQ-GNN, a universal framework to scale up any convolution-based GNNs using Vector Quantization (VQ) without compromising the performance. In contrast to sampling-based techniques, our approach can effectively preserve all the messages passed to a mini-batch of nodes by learning and updating a small number of quantized reference vectors of global node representations, using VQ within each GNN layer. Our framework avoids the "neighbor explosion" problem of GNNs using quantized representations combined with a low-rank version of the graph convolution matrix. We show that such a compact low-rank version of the gigantic convolution matrix is sufficient both theoretically and experimentally. In company with VQ, we design a novel approximated message passing algorithm and a nontrivial back-propagation rule for our framework. Experiments on various types of GNN backbones demonstrate the scalability and competitive performance of our framework on large-graph node classification and link prediction benchmarks. 
    more » « less
  5. Graphs are powerful representations for relations among objects, which have attracted plenty of attention in both academia and industry. A fundamental challenge for graph learning is how to train an effective Graph Neural Network (GNN) encoder without labels, which are expensive and time consuming to obtain. Contrastive Learning (CL) is one of the most popular paradigms to address this challenge, which trains GNNs by discriminating positive and negative node pairs. Despite the success of recent CL methods, there are still two under-explored problems. Firstly, how to reduce the semantic error introduced by random topology based data augmentations. Traditional CL defines positive and negative node pairs via the node-level topological proximity, which is solely based on the graph topology regardless of the semantic information of node attributes, and thus some semantically similar nodes could be wrongly treated as negative pairs. Secondly, how to effectively model the multiplexity of the real-world graphs, where nodes are connected by various relations and each relation could form a homogeneous graph layer. To solve these problems, we propose a novel multiplex heterogeneous graph prototypical contrastive leaning (X-GOAL) framework to extract node embeddings. X-GOAL is comprised of two components: the GOAL framework, which learns node embeddings for each homogeneous graph layer, and an alignment regularization, which jointly models different layers by aligning layer-specific node embeddings. Specifically, the GOAL framework captures the node-level information by a succinct graph transformation technique, and captures the cluster-level information by pulling nodes within the same semantic cluster closer in the embedding space. The alignment regularization aligns embeddings across layers at both node level and cluster level. We evaluate the proposed X-GOAL on a variety of real-world datasets and downstream tasks to demonstrate the effectiveness of the X-GOAL framework. 
    more » « less