Graph Convolutional Network (GCN) has exhibited strong empirical performance in many real-world applications. The vast majority of existing works on GCN primarily focus on the accuracy while ignoring how confident or uncertain a GCN is with respect to its predictions. Despite being a cornerstone of trustworthy graph mining, uncertainty quantification on GCN has not been well studied and the scarce existing efforts either fail to provide deterministic quantification or have to change the training procedure of GCN by introducing additional parameters or architectures. In this paper, we propose the first frequentist-based approach named JuryGCN in quantifying the uncertainty of GCN, where the key idea is to quantify the uncertainty of a node as the width of confidence interval by a jackknife estimator. Moreover, we leverage the influence functions to estimate the change in GCN parameters without re-training to scale up the computation. The proposed JuryGCN is capable of quantifying uncertainty deterministically without modifying the GCN architecture or introducing additional parameters. We perform extensive experimental evaluation on real-world datasets in the tasks of both active learning and semi-supervised node classification, which demonstrate the efficacy of the proposed method.
more »
« less
RawlsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network
Graph Convolutional Network (GCN) plays pivotal roles in many real-world applications. Despite the successes of GCN deployment, GCN often exhibits performance disparity with respect to node de- grees, resulting in worse predictive accuracy for low-degree nodes. We formulate the problem of mitigating the degree-related per- formance disparity in GCN from the perspective of the Rawlsian difference principle, which is originated from the theory of distribu- tive justice. Mathematically, we aim to balance the utility between low-degree nodes and high-degree nodes while minimizing the task- specific loss. Specifically, we reveal the root cause of this degree- related unfairness by analyzing the gradients of weight matrices in GCN. Guided by the gradients of weight matrices, we further propose a pre-processing method RawlsGCN-Graph and an in- processing method RawlsGCN-Grad that achieves fair predictive accuracy in low-degree nodes without modification on the GCN architecture or introduction of additional parameters. Extensive experiments on real-world graphs demonstrate the effectiveness of our proposed RawlsGCN methods in significantly reducing degree- related bias while retaining comparable overall performance.
more »
« less
- NSF-PAR ID:
- 10332506
- Date Published:
- Journal Name:
- RawlsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network
- Page Range / eLocation ID:
- 1214 to 1225
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The graph convolutional network (GCN) has recently achieved promising performance of 3D human pose estimation (HPE) by modeling the relationship among body parts. However, most prior GCN approaches suffer from two main drawbacks. First, they share a feature transformation for each node within a graph convolution layer. This prevents them from learning different relations between different body joints. Second, the graph is usually defined according to the human skeleton and is suboptimal because human activities often exhibit motion patterns beyond the natural connections of body joints. To address these limitations, we introduce a novel Modulated GCN for 3D HPE. It consists of two main components: weight modulation and affinity modulation. Weight modulation learns different modulation vectors for different nodes so that the feature transformations of different nodes are disentangled while retaining a small model size. Affinity modulation adjusts the graph structure in a GCN so that it can model additional edges beyond the human skeleton. We investigate several affinity modulation methods as well as the impact of regularizations. Rigorous ablation study indicates both types of modulation improve performance with negligible overhead. Compared with state-of-the-art GCNs for 3D HPE, our approach either significantly reduces the estimation errors, e.g., by around 10%, while retaining a small model size or drastically reduces the model size, e.g., from 4.22M to 0.29M (a 14.5× reduction), while achieving comparable performance. Results on two benchmarks show our Modulated GCN outperforms some recent states of the art. Our code is available at https://github.com/ZhimingZo/Modulated-GCN.more » « less
-
Recent studies on Graph Neural Networks(GNNs) provide both empirical and theoretical evidence supporting their effectiveness in capturing structural patterns on both homophilic and certain heterophilic graphs. Notably, most real-world homophilic and heterophilic graphs are comprised of a mixture of nodes in both homophilic and heterophilic structural patterns, exhibiting a structural disparity. However, the analysis of GNN performance with respect to nodes exhibiting different structural patterns, e.g., homophilic nodes in heterophilic graphs, remains rather limited. In the present study, we provide evidence that Graph Neural Networks(GNNs) on node classification typically perform admirably on homophilic nodes within homophilic graphs and heterophilic nodes within heterophilic graphs while struggling on the opposite node set, exhibiting a performance disparity. We theoretically and empirically identify effects of GNNs on testing nodes exhibiting distinct structural patterns. We then propose a rigorous, non-i.i.d PAC-Bayesian generalization bound for GNNs, revealing reasons for the performance disparity, namely the aggregated feature distance and homophily ratio difference between training and testing nodes. Furthermore, we demonstrate the practical implications of our new findings via (1) elucidating the effectiveness of deeper GNNs; and (2) revealing an over-looked distribution shift factor on graph out-of-distribution problem and proposing a new scenario accordingly.more » « less
-
This paper presents an algorithm for detecting attributed high-degree node isomorphism. High-degree isomorphic nodes seldom happen by chance and often represent duplicated entities or data processing errors. By definition, isomorphic nodes are topologically indistinguishable and can be problematic in graph ML tasks. The algorithm employs a parallel, “degree-bounded” approach that fingerprints each node’s local properties through a hash, which constrains the search to nodes within hash-defined buckets, thus minimising the number of comparisons. This method scales on graphs with billions of nodes and edges. Finally, we provide isomorphic node oddities identified in real-world data.more » « less
-
Noise and inconsistency commonly exist in real-world information networks, due to the inherent error-prone nature of human or user privacy concerns. To date, tremendous efforts have been made to advance feature learning from networks, including the most recent graph convolutional networks (GCNs) or attention GCN, by integrating node content and topology structures. However, all existing methods consider networks as error-free sources and treat feature content in each node as independent and equally important to model node relations. Noisy node content, combined with sparse features, provides essential challenges for existing methods to be used in real-world noisy networks. In this article, we propose feature-based attention GCN (FA-GCN), a feature-attention graph convolution learning framework, to handle networks with noisy and sparse node content. To tackle noise and sparse content in each node, FA-GCN first employs a long short-term memory (LSTM) network to learn dense representation for each node feature. To model interactions between neighboring nodes, a feature-attention mechanism is introduced to allow neighboring nodes to learn and vary feature importance, with respect to their connections. By using a spectral-based graph convolution aggregation process, each node is allowed to concentrate more on the most determining neighborhood features aligned with the corresponding learning task. Experiments and validations, w.r.t. different noise levels, demonstrate that FA-GCN achieves better performance than the state-of-the-art methods in both noise-free and noisy network environments.more » « less