skip to main content

This content will become publicly available on April 25, 2023

Title: RawlsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network
Graph Convolutional Network (GCN) plays pivotal roles in many real-world applications. Despite the successes of GCN deployment, GCN often exhibits performance disparity with respect to node de- grees, resulting in worse predictive accuracy for low-degree nodes. We formulate the problem of mitigating the degree-related per- formance disparity in GCN from the perspective of the Rawlsian difference principle, which is originated from the theory of distribu- tive justice. Mathematically, we aim to balance the utility between low-degree nodes and high-degree nodes while minimizing the task- specific loss. Specifically, we reveal the root cause of this degree- related unfairness by analyzing the gradients of weight matrices in GCN. Guided by the gradients of weight matrices, we further propose a pre-processing method RawlsGCN-Graph and an in- processing method RawlsGCN-Grad that achieves fair predictive accuracy in low-degree nodes without modification on the GCN architecture or introduction of additional parameters. Extensive experiments on real-world graphs demonstrate the effectiveness of our proposed RawlsGCN methods in significantly reducing degree- related bias while retaining comparable overall performance.
; ; ; ;
Award ID(s):
1939725 1947135
Publication Date:
Journal Name:
RawlsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network
Page Range or eLocation-ID:
1214 to 1225
Sponsoring Org:
National Science Foundation
More Like this
  1. Graph Convolutional Network (GCN) has exhibited strong empirical performance in many real-world applications. The vast majority of existing works on GCN primarily focus on the accuracy while ignoring how confident or uncertain a GCN is with respect to its predictions. Despite being a cornerstone of trustworthy graph mining, uncertainty quantification on GCN has not been well studied and the scarce existing efforts either fail to provide deterministic quantification or have to change the training procedure of GCN by introducing additional parameters or architectures. In this paper, we propose the first frequentist-based approach named JuryGCN in quantifying the uncertainty of GCN, where the key idea is to quantify the uncertainty of a node as the width of confidence interval by a jackknife estimator. Moreover, we leverage the influence functions to estimate the change in GCN parameters without re-training to scale up the computation. The proposed JuryGCN is capable of quantifying uncertainty deterministically without modifying the GCN architecture or introducing additional parameters. We perform extensive experimental evaluation on real-world datasets in the tasks of both active learning and semi-supervised node classification, which demonstrate the efficacy of the proposed method.
  2. The graph convolutional network (GCN) has recently achieved promising performance of 3D human pose estimation (HPE) by modeling the relationship among body parts. However, most prior GCN approaches suffer from two main drawbacks. First, they share a feature transformation for each node within a graph convolution layer. This prevents them from learning different relations between different body joints. Second, the graph is usually defined according to the human skeleton and is suboptimal because human activities often exhibit motion patterns beyond the natural connections of body joints. To address these limitations, we introduce a novel Modulated GCN for 3D HPE. It consists of two main components: weight modulation and affinity modulation. Weight modulation learns different modulation vectors for different nodes so that the feature transformations of different nodes are disentangled while retaining a small model size. Affinity modulation adjusts the graph structure in a GCN so that it can model additional edges beyond the human skeleton. We investigate several affinity modulation methods as well as the impact of regularizations. Rigorous ablation study indicates both types of modulation improve performance with negligible overhead. Compared with state-of-the-art GCNs for 3D HPE, our approach either significantly reduces the estimation errors, e.g., by around 10%,more »while retaining a small model size or drastically reduces the model size, e.g., from 4.22M to 0.29M (a 14.5× reduction), while achieving comparable performance. Results on two benchmarks show our Modulated GCN outperforms some recent states of the art. Our code is available at« less
  3. Learning the low-dimensional representations of graphs (i.e., network embedding) plays a critical role in network analysis and facilitates many downstream tasks. Recently graph convolutional networks (GCNs) have revolutionized the field of network embedding, and led to state-of-the-art performance in network analysis tasks such as link prediction and node classification. Nevertheless, most of the existing GCN-based network embedding methods are proposed for unsigned networks. However, in the real world, some of the networks are signed, where the links are annotated with different polarities, e.g., positive vs. negative. Since negative links may have different properties from the positive ones and can also significantly affect the quality of network embedding. Thus in this paper, we propose a novel network embedding framework SNEA to learn Signed Network Embedding via graph Attention. In particular, we propose a masked self-attentional layer, which leverages self-attention mechanism to estimate the importance coefficient for pair of nodes connected by different type of links during the embedding aggregation process. Then SNEA utilizes the masked self-attentional layers to aggregate more important information from neighboring nodes to generate the node embeddings based on balance theory. Experimental results demonstrate the effectiveness of the proposed framework through signed link prediction task on several real-worldmore »signed network datasets.« less
  4. Network embedding has been an effective tool to analyze heterogeneous networks (HNs) by representing nodes in a low-dimensional space. Although many recent methods have been proposed for representation learning of HNs, there is still much room for improvement. Random walks based methods are currently popular methods to learn network embedding; however, they are random and limited by the length of sampled walks, and have difculty capturing network structural information. Some recent researches proposed using meta paths to express the sample relationship in HNs. Another popular graph learning model, the graph convolutional network (GCN) is known to be capable of better exploitation of network topology, but the current design of GCN is intended for homogenous networks. This paper proposes a novel combination of meta-graph and graph convolution, the meta-graph based graph convolutional networks (MGCN). To fully capture the complex long semantic information, MGCN utilizes different meta-graphs in HNs. As different meta-graphs express different semantic relationships, MGCN learns the weights of different meta-graphs to make up for the loss of semantics when applying GCN. In addition, we improve the current convolution design by adding node self-signicance. To validate our model in learning feature representation, we present comprehensive experiments on four real-world datasetsmore »and two representation tasks: classication and link prediction. WMGCN's representations can improve accuracy scores by up to around 10% in comparison to other popular representation learning models. What's more, WMGCN'feature learning outperforms other popular baselines. The experimental results clearly show our model is superior over other state-of-the-art representation learning algorithms.« less
  5. Recurrent Neural Networks (RNNs) are becoming increasingly important for time series-related applications which require efficient and real-time implementations. The two major types are Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks. It is a challenging task to have real-time, efficient, and accurate hardware RNN implementations because of the high sensitivity to imprecision accumulation and the requirement of special activation function implementations. Recently two works have focused on FPGA implementation of inference phase of LSTM RNNs with model compression. First, ESE uses a weight pruning based compressed RNN model but suffers from irregular network structure after pruning. The second work C-LSTM mitigates the irregular network limitation by incorporating block-circulant matrices for weight matrix representation in RNNs, thereby achieving simultaneous model compression and acceleration. A key limitation of the prior works is the lack of a systematic design optimization framework of RNN model and hardware implementations, especially when the block size (or compression ratio) should be jointly optimized with RNN type, layer size, etc. In this paper, we adopt the block-circulant matrixbased framework, and present the Efficient RNN (E-RNN) framework for FPGA implementations of the Automatic Speech Recognition (ASR) application. The overall goal is to improve performance/energy efficiency under accuracymore »requirement. We use the alternating direction method of multipliers (ADMM) technique for more accurate block-circulant training, and present two design explorations providing guidance on block size and reducing RNN training trials. Based on the two observations, we decompose E-RNN in two phases: Phase I on determining RNN model to reduce computation and storage subject to accuracy requirement, and Phase II on hardware implementations given RNN model, including processing element design/optimization, quantization, activation implementation, etc. 1 Experimental results on actual FPGA deployments show that E-RNN achieves a maximum energy efficiency improvement of 37.4× compared with ESE, and more than 2× compared with C-LSTM, under the same accuracy.« less