skip to main content


Title: Adversarial Graph Contrastive Learning with Information Regularization
Contrastive learning is an effective unsupervised method in graph representation learning. Recently, the data augmentation based con- trastive learning method has been extended from images to graphs. However, most prior works are directly adapted from the models designed for images. Unlike the data augmentation on images, the data augmentation on graphs is far less intuitive and much harder to provide high-quality contrastive samples, which are the key to the performance of contrastive learning models. This leaves much space for improvement over the existing graph contrastive learning frameworks. In this work, by introducing an adversarial graph view and an information regularizer, we propose a simple but effective method, Adversarial Graph Contrastive Learning (ArieL), to extract informative contrastive samples within a reasonable constraint. It consistently outperforms the current graph contrastive learning methods in the node classification task over various real-world datasets and further improves the robustness of graph contrastive learning.  more » « less
Award ID(s):
1947135
NSF-PAR ID:
10332507
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Adversarial Graph Contrastive Learning with Information Regularization
Page Range / eLocation ID:
1362 to 1371
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Koyejo S. ; Mohamed S. ; Agarwal A. ; Belgrave D. ; Cho K. ; Oh A. (Ed.)
    This paper targets at improving the generalizability of hypergraph neural networks in the low-label regime, through applying the contrastive learning approach from images/graphs (we refer to it as HyperGCL). We focus on the following question: How to construct contrastive views for hypergraphs via augmentations? We provide the solutions in two folds. First, guided by domain knowledge, we fabricate two schemes to augment hyperedges with higher-order relations encoded, and adopt three vertex augmentation strategies from graph-structured data. Second, in search of more effective views in a data-driven manner, we for the first time propose a hypergraph generative model to generate augmented views, and then an end-to-end differentiable pipeline to jointly learn hypergraph augmentations and model parameters. Our technical innovations are reflected in designing both fabricated and generative augmentations of hypergraphs. The experimental findings include: (i) Among fabricated augmentations in HyperGCL, augmenting hyperedges provides the most numerical gains, implying that higher-order information in structures is usually more downstream-relevant; (ii) Generative augmentations do better in preserving higher-order information to further benefit generalizability; (iii) HyperGCL also boosts robustness and fairness in hypergraph representation learning. Codes are released at https://github.com/weitianxin/HyperGCL. 
    more » « less
  2. Deep generative models have enabled the automated synthesis of high-quality data for diverse applications. However, the most effective generative models are specialized to data from a single domain (e.g., images or text). Real-world applications such as healthcare require multi-modal data from multiple domains (e.g., both images and corresponding text), which are difficult to acquire due to limited availability and privacy concerns and are much harder to synthesize. To tackle this joint synthesis challenge, we propose an End-to-end MultImodal X-ray genERative model (EMIXER) for jointly synthesizing x-ray images and corresponding free-text reports, all conditional on diagnosis labels. EMIXER is an conditional generative adversarial model by 1) generating an image based on a label, 2) encoding the image to a hidden embedding, 3) producing the corresponding text via a hierarchical decoder from the image embedding, and 4) a joint discriminator for assessing both the image and the corresponding text. EMIXER also enables self-supervision to leverage vast amount of unlabeled data. Extensive experiments with real X-ray reports data illustrate how data augmentation using synthesized multimodal samples can improve the performance of a variety of supervised tasks including COVID-19 X-ray classification with very limited samples. The quality of generated images and reports are also confirmed by radiologists. We quantitatively show that EMIXER generated synthetic datasets can augment X-ray image classification, report generation models to achieve 5.94% and 6.9% improvement on models trained only on real data samples. Taken together, our results highlight the promise of state of generative models to advance clinical machine learning. 
    more » « less
  3. The last decade has witnessed a surge of interest in applying deep learning models for discovering sequential patterns from a large volume of data. Recent works show that deep learning models can be further improved by enforcing models to learn a smooth output distribution around each data point. This can be achieved by augmenting training data with slight perturbations that are designed to alter model outputs. Such adversarial training approaches have shown much success in improving the generalization performance of deep learning models on static data, e.g., transaction data or image data captured on a single snapshot. However, when applied to sequential data, the standard adversarial training approaches cannot fully capture the discriminative structure of a sequence. This is because real-world sequential data are often collected over a long period of time and may include much irrelevant information to the classification task. To this end, we develop a novel adversarial training approach for sequential data classification by investigating when and how to perturb a sequence for an effective data augmentation. Finally, we demonstrate the superiority of the proposed method over baselines in a diversity of real-world sequential datasets. 
    more » « less
  4. Abstract Motivation

    Modeling the structural plasticity of protein molecules remains challenging. Most research has focused on obtaining one biologically active structure. This includes the recent AlphaFold2 that has been hailed as a breakthrough for protein modeling. Computing one structure does not suffice to understand how proteins modulate their interactions and even evade our immune system. Revealing the structure space available to a protein remains challenging. Data-driven approaches that learn to generate tertiary structures are increasingly garnering attention. These approaches exploit the ability to represent tertiary structures as contact or distance maps and make direct analogies with images to harness convolution-based generative adversarial frameworks from computer vision. Since such opportunistic analogies do not allow capturing highly structured data, current deep models struggle to generate physically realistic tertiary structures.

    Results

    We present novel deep generative models that build upon the graph variational autoencoder framework. In contrast to existing literature, we represent tertiary structures as ‘contact’ graphs, which allow us to leverage graph-generative deep learning. Our models are able to capture rich, local and distal constraints and additionally compute disentangled latent representations that reveal the impact of individual latent factors. This elucidates what the factors control and makes our models more interpretable. Rigorous comparative evaluation along various metrics shows that the models, we propose advance the state-of-the-art. While there is still much ground to cover, the work presented here is an important first step, and graph-generative frameworks promise to get us to our goal of unraveling the exquisite structural complexity of protein molecules.

    Availability and implementation

    Code is available at https://github.com/anonymous1025/CO-VAE.

    Supplementary information

    Supplementary data are available at Bioinformatics Advances online.

     
    more » « less
  5. Self-supervised learning of graph neural networks (GNN) is in great need because of the widespread label scarcity issue in real-world graph/network data. Graph contrastive learning (GCL), by training GNNs to maximize the correspondence between the representations of the same graph in its different augmented forms, may yield robust and transferable GNNs even without using labels. However, GNNs trained by traditional GCL often risk capturing redundant graph features and thus may be brittle and provide sub-par performance in downstream tasks. Here, we propose a novel principle, termed adversarial-GCL (\textit{AD-GCL}), which enables GNNs to avoid capturing redundant information during the training by optimizing adversarial graph augmentation strategies used in GCL. We pair AD-GCL with theoretical explanations and design a practical instantiation based on trainable edge-dropping graph augmentation. We experimentally validate AD-GCL by comparing with the state-of-the-art GCL methods and achieve performance gains of up-to~14\% in unsupervised, ~6\% in transfer and~3\% in semi-supervised learning settings overall with 18 different benchmark datasets for the tasks of molecule property regression and classification, and social network classification. 
    more » « less