skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spitfire: A Three-Tier Buffer Manager for Volatile and Non-Volatile Memory
The design of the buffer manager in database management systems (DBMSs) is influenced by the performance characteristics of volatile memory (i.e., DRAM) and non-volatile storage (e.g., SSD). The key design assumptions have been that the data must be migrated to DRAM for the DBMS to operate on it and that storage is orders of magnitude slower than DRAM. But the arrival of new non-volatile memory (NVM) technologies that are nearly as fast as DRAM invalidates these previous assumptions.Researchers have recently designed Hymem, a novel buffer manager for a three-tier storage hierarchy comprising of DRAM, NVM, and SSD. Hymem supports cache-line-grained loading and an NVM-aware data migration policy. While these optimizations improve its throughput, Hymem suffers from two limitations. First, it is a single-threaded buffer manager. Second, it is evaluated on an NVM emulation platform. These limitations constrain the utility of the insights obtained using Hymem. In this paper, we present Spitfire, a multi-threaded, three-tier buffer manager that is evaluated on Optane Persistent Memory Modules, an NVM technology that is now being shipped by Intel. We introduce a general framework for reasoning about data migration in a multi-tier storage hierarchy. We illustrate the limitations of the optimizations used in Hymem on Optane and then discuss how Spitfire circumvents them. We demonstrate that the data migration policy has to be tailored based on the characteristics of the devices and the workload. Given this, we present a machine learning technique for automatically adapting the policy for an arbitrary workload and storage hierarchy. Our experiments show that Spitfire works well across different workloads and storage hierarchies.  more » « less
Award ID(s):
1850342
PAR ID:
10332569
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the ACM SIGMOD International Conference on Management of Data
Page Range / eLocation ID:
2195–2207
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The design of the buffer manager in database management systems (DBMSs) is influenced by the performance characteristics of volatile memory (DRAM) and non-volatile storage (e.g., SSD). The key design assumptions have been that the data must be migrated to DRAM for the DBMS to operate on it and that storage is orders of magnitude slower than DRAM. But the arrival of new non-volatile memory (NVM) technologies that are nearly as fast as DRAM invalidates these previous assumptions. This paper presents techniques for managing and designing a multi-tier storage hierarchy comprising of DRAM, NVM, and SSD. Our main technical contributions are a multi-tier buffer manager and a storage system designer that leverage the characteristics of NVM. We propose a set of optimizations for maximizing the utility of data migration between different devices in the storage hierarchy. We demonstrate that these optimizations have to be tailored based on device and workload characteristics. Given this, we present a technique for adapting these optimizations to achieve a near-optimal buffer management policy for an arbitrary workload and storage hierarchy without requiring any manual tuning. We finally present a recommendation system for designing a multi-tier storage hierarchy for a target workload and system cost budget. Our results show that the NVM-aware buffer manager and storage system designer improve throughput and reduce system cost across different transaction and analytical processing workloads. 
    more » « less
  2. Computational storage adds computing to storage devices, providing potential benefits in offload, data-reduction, and lower energy. Successful computational SSD architectures should match growing flash bandwidth, which in turn requires high SSD DRAM memory bandwidth. This creates a memory wall scaling problem, resulting from SSDs’ stringent power and cost constraints. A survey of recent computational SSD research shows that many computational storage offloads are suited to stream computing. To exploit this opportunity, we propose a novel general-purpose computational SSD and core architecture, called ASSASIN (Architecture Support for Stream computing to Accelerate computatIoNal Storage). ASSASIN provides a unified set of compute engines between SSD DRAM and the flash array. This eliminates the SSD DRAM bottleneck by enabling direct computing on flash data streams. ASSASIN further employs a crossbar to achieve performance even when flash data layout is uneven and preserve independence for page layout decisions in the flash translation layer. With stream buffers and scratchpad memories, ASSASIN core’s memory hierarchy and instruction set extensions provide superior low-latency access at low-power and effectively keep streaming flash data out of the in-SSD cache-DRAM memory hierarchy, thereby solving the memory wall. Evaluation shows that ASSASIN delivers 1.5x - 2.4x speedup for offloaded functions compared to state-of-the-art computational SSD architectures. Further, ASSASIN’s streaming approach yields 2.0x power efficiency and 3.2x area efficiency improvement. And these performance benefits at the level of computational SSDs translate to 1.1x - 1.5x end-to-end speedups on data analytics workloads. 
    more » « less
  3. Apache Spark is a popular cluster computing framework for iterative analytics workloads due to its use of Resilient Distributed Datasets (RDDs) to cache data for in-memory processing. We have revealed that the performance of Spark RDD cache can be severely limited if its capacity falls short to the needs of the workloads. In this paper, we have explored different memory hybridization strategies to leverage emergent Non-Volatile Memory (NVM) devices for Spark's RDD cache. We have found that a simple layered hybridization approach does not offer an effective solution. Therefore, we have designed a flat hybridization scheme to leverage NVM for caching RDD blocks, along with several architectural optimizations such as dynamic memory allocation for block unrolling, asynchronous migration with preemption, and opportunistic eviction to disk. We have performed an extensive set of experiments to evaluate the performance of our proposed flat hybridization strategy and found it to be robust in handling different system and NVM characteristics. Our proposed approach uses DRAM for a fraction of the hybrid memory system and yet manages to keep the increase in execution time to be within 10% on average. Moreover, our opportunistic eviction of blocks to disk improves performance by up to 7.5% when utilized alongside the current mechanism. 
    more » « less
  4. null (Ed.)
    Storing data structures in high-capacity byte-addressable persistent memory instead of DRAM or a storage device offers the opportunity to (1) reduce cost and power consumption compared with DRAM, (2) decrease the latency and CPU resources needed for an I/O operation compared with storage, and (3) allow for fast recovery as the data structure remains in memory after a machine failure. The first commercial offering in this space is Intel® Optane™ Direct Connect (Optane™ DC) Persistent Memory. Optane™ DC promises access time within a constant factor of DRAM, with larger capacity, lower energy consumption, and persistence. We present an experimental evaluation of persistent transactional memory performance, and explore how Optane™ DC durability domains affect the overall results. Given that neither of the two available durability domains can deliver performance competitive with DRAM, we introduce and emulate a new durability domain, called PDRAM, in which the memory controller tracks enough information (and has enough reserve power) to make DRAM behave like a persistent cache of Optane™ DC memory.In this paper we compare the performance of these durability domains on several configurations of five persistent transactional memory applications. We find a large throughput difference, which emphasizes the importance of choosing the best durability domain for each application and system. At the same time, our results confirm that recently published persistent transactional memory algorithms are able to scale, and that recent optimizations for these algorithms lead to strong performance, with speedups as high as 6× at 16 threads. 
    more » « less
  5. Using flash-based solid state drives (SSDs) as main memory has been proposed as a practical solution towards scaling memory capacity for data-intensive applications. However, almost all existing approaches rely on the paging mechanism to move data between SSDs and host DRAM. This inevitably incurs significant performance overhead and extra I/O traffic. Thanks to the byte-addressability supported by the PCIe interconnect and the internal memory in SSD controllers, it is feasible to access SSDs in both byte and block granularity today. Exploiting the benefits of SSD's byte-accessibility in today's memory-storage hierarchy is, however, challenging as it lacks systems support and abstractions for programs. In this paper, we present FlatFlash, an optimized unified memory-storage hierarchy, to efficiently use byte-addressable SSD as part of the main memory. We extend the virtual memory management to provide a unified memory interface so that programs can access data across SSD and DRAM in byte granularity seamlessly. We propose a lightweight, adaptive page promotion mechanism between SSD and DRAM to gain benefits from both the byte-addressable large SSD and fast DRAM concurrently and transparently, while avoiding unnecessary page movements. Furthermore, we propose an abstraction of byte-granular data persistence to exploit the persistence nature of SSDs, upon which we rethink the design primitives of crash consistency of several representative software systems that require data persistence, such as file systems and databases. Our evaluation with a variety of applications demonstrates that, compared to the current unified memory-storage systems, FlatFlash improves the performance for memory-intensive applications by up to 2.3x, reduces the tail latency for latency-critical applications by up to 2.8x, scales the throughput for transactional database by up to 3.0x, and decreases the meta-data persistence overhead for file systems by up to 18.9x. FlatFlash also improves the cost-effectiveness by up to 3.8x compared to DRAM-only systems, while enhancing the SSD lifetime significantly. 
    more » « less