skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coupling spectral and resource-use complementarity in experimental grassland and forest communities
Reflectance spectra provide integrative measures of plant phenotypes by capturing chemical, morphological, anatomical and architectural trait information. Here, we investigate the linkages between plant spectral variation, and spectral and resource-use complementarity that contribute to ecosystem productivity. In both a forest and prairie grassland diversity experiment, we delineated n -dimensional hypervolumes using wavelength bands of reflectance spectra to test the association between the spectral space occupied by individual plants and their growth, as well as between the spectral space occupied by plant communities and ecosystem productivity. We show that the spectral space occupied by individuals increased with their growth, and the spectral space occupied by plant communities increased with ecosystem productivity. Furthermore, ecosystem productivity was better explained by inter-individual spectral complementarity than by the large spectral space occupied by productive individuals. Our results indicate that spectral hypervolumes of plants can reflect ecological strategies that shape community composition and ecosystem function, and that spectral complementarity can reveal resource-use complementarity.  more » « less
Award ID(s):
2021898
PAR ID:
10332602
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
288
Issue:
1958
ISSN:
0962-8452
Page Range / eLocation ID:
20211290
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Coastal marshes are globally important, carbon dense ecosystems simultaneously maintained and threatened by sea‐level rise. Warming temperatures may increase wetland plant productivity and organic matter accumulation, but temperature‐modulated feedbacks between productivity and decomposition make it difficult to assess how wetlands and their thick, organic‐rich soils will respond to climate warming. Here, we actively increased aboveground plant‐surface and belowground soil temperatures in two marsh plant communities, and found that a moderate amount of warming (1.7°C above ambient temperatures) consistently maximized root growth, marsh elevation gain, and belowground carbon accumulation. Marsh elevation loss observed at higher temperatures was associated with increased carbon mineralization and increased microtopographic heterogeneity, a potential early warning signal of marsh drowning. Maximized elevation and belowground carbon accumulation for moderate warming scenarios uniquely suggest linkages between metabolic theory of individuals and landscape‐scale ecosystem resilience and function, but our work indicates nonpermanent benefits as global temperatures continue to rise. 
    more » « less
  2. Abstract Foliar endophytes play crucial roles in large-scale ecosystem functions such as plant productivity, decomposition, and nutrient cycling. While the possible effects of environmental nutrient supply on the growth and carbon use of endophytic microbes have critical implications for these processes, these impacts are not fully understood. Here, we examined the effects of long-term elevated nitrogen, phosphorus, potassium, and micronutrient (NPKμ) supply on culturable bacterial and fungal foliar endophytes inhabiting the prairie grass Andropogon gerardii. We hypothesized that elevated soil nutrients alter the taxonomic composition and carbon use phenotypes of foliar endophytes and significantly shift the potential for resource competition among microbes within leaves. We observed changes in taxonomic composition and carbon use patterns of fungal, but not bacterial, endophytes of A. gerardii growing in NPKμ-amended versus ambient conditions. Fungal endophytes from NPKμ-amended plants had distinct carbon use profiles and demonstrated greater specialization across carbon sources compared to control plots. Resource niche overlap between bacterial and fungal endophytes also increased with plot nutrient supply, suggesting enhanced potential for inter-kingdom competition. Collectively, this work suggests that soil nutrient enrichment alters how fungal endophyte communities exist in the foliar environment, with potentially significant implications for broad-scale ecosystem function. 
    more » « less
  3. Abstract Ecological communities frequently exhibit remarkable taxonomic and trait diversity, and this diversity is consistently shown to regulate ecosystem function and resilience. However, ecologists lack a synthetic theory for how this diversity is maintained when species compete for limited resources, hampering our ability to project the future of biodiversity under climate change. Water‐limited plant communities are an ideal system in which to study these questions given (1) the diversity of hydraulic traits they exhibit, (2) the importance of this diversity for ecosystem productivity and drought resilience, and (3) forecast changes to precipitation and evapotranspiration under climate change. We developed an analytically tractable model of water and light competition in age‐structured perennial plant communities and demonstrated that high diversity is maintained through phenological division of the time between storms. We modeled a system where water arrives in the form of intermittent storms, between which plants consume the limited pool of soil water until it becomes dry enough that they must physiologically shut down to avoid embolism. Competition occurs because individuals, by consuming the shared water pool, cause their competitors to shut down earlier, harming their long‐term growth and reproduction. When total precipitation is low, plants in the model compete only for water. However, increases in precipitation can cause the canopy to close and individuals to begin competing for light. Variation among species in the minimum soil water content at which they can sustain growth without embolizing leads to emergent phenological variation, as species will shut down at varying points between storm events. When this variation is paired with a trade‐off such that species that shut down early are compensated by faster biomass accumulation, higher fecundity, or lower mortality, there is no limit to the number that can coexist. These results are robust to variation in both total precipitation and the time between storms. The model therefore offers a plausible explanation for how hydraulic trait diversity is maintained in a wide array of natural systems. More broadly, this work illustrates how the phenological division of an apparently singular resource can emerge because of common trade‐offs and ultimately foster high taxonomic and trait diversity. 
    more » « less
  4. Channel incision degrades ecosystems by lowering water tables and disconnecting floodplains. Stream restoration often aims to reverse these impacts. However, projects typically receive minimal monitoring, and treatment effectiveness has not been validated. We used trait‐based analysis to evaluate whether two stream restoration techniques—beaver dam analogs (BDAs) and plug‐and‐ponds—raised water tables and increased overbank flooding, whether these altered environmental filters facilitated recovery of riparian plant communities, and how reassembly impacted the representation of traits that influence ecosystem function. We report on a before‐after‐control‐impact study and Bayesian analysis that estimated the probability that treatments affected riparian plant functional diversity and composition. We found a high probability (0.99 and 0.97, respectively) that BDAs decreased functional dispersion by ≥50% and plug‐and‐ponds decreased dispersion by ≥30%. Both treatments increased the relative abundance of high moisture use plants, wetland plants, and plants with high anaerobic tolerance. For example, BDAs increased the relative abundance of obligate wetland plants by 100%, and plug‐and‐ponds increased the relative abundance of facultative wetland plants by 105%, on average. These results suggest treatments modified environmental filters and recovered riparian plant communities. Ecosystem function was likely altered as the streamside plant community reassembled. Small increases in functional divergence suggest both treatments increased resource use efficiency, and we found a high probability of small treatment effect sizes (<20%) related to changes in community‐level C:N and nitrogen fixation. Our results demonstrate trait‐based analysis can detect a rapid response to restoration and offer a cost‐effective monitoring approach to compare treatments across space and time. 
    more » « less
  5. Abstract Evolutionary relatedness underlies patterns of functional diversity in the natural world. Hyperspectral remote sensing has the potential to detect these patterns in plants through inherited patterns of leaf reflectance spectra. We collected leaf reflectance data across the California flora from plants grown in a common garden. Regions of the reflectance spectra vary in the depth and strength of phylogenetic signal. We also show that these differences are much greater than variation due to the geographic origin of the plant. At the phylogenetic extent of the California flora, spectral variation explained by the combination of ecotypic variation (divergent evolution) and convergent evolution of disparate lineages was minimal (3%–7%) but statistically significant. Interestingly, at the extent of a single genus (Arctostaphylos) no unique variation could be attributed to geographic origin. However, up to 18% of the spectral variation amongArctostaphylosindividuals was shared between phylogeny and intraspecific variation stemming from ecotypic differences (i.e., geographic origin). Future studies could conduct more structured experiments (e.g., transplants or observations along environmental gradients) to disentangle these sources of variation and include other intraspecific variation (e.g., plasticity). We constrain broad‐scale spectral variability due to ecotypic sources, providing further support for the idea that phylogenetic clusters of species might be detectable through remote sensing. Phylogenetic clusters could represent a valuable dimension of biodiversity monitoring and detection. 
    more » « less