skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coupling spectral and resource-use complementarity in experimental grassland and forest communities
Reflectance spectra provide integrative measures of plant phenotypes by capturing chemical, morphological, anatomical and architectural trait information. Here, we investigate the linkages between plant spectral variation, and spectral and resource-use complementarity that contribute to ecosystem productivity. In both a forest and prairie grassland diversity experiment, we delineated n -dimensional hypervolumes using wavelength bands of reflectance spectra to test the association between the spectral space occupied by individual plants and their growth, as well as between the spectral space occupied by plant communities and ecosystem productivity. We show that the spectral space occupied by individuals increased with their growth, and the spectral space occupied by plant communities increased with ecosystem productivity. Furthermore, ecosystem productivity was better explained by inter-individual spectral complementarity than by the large spectral space occupied by productive individuals. Our results indicate that spectral hypervolumes of plants can reflect ecological strategies that shape community composition and ecosystem function, and that spectral complementarity can reveal resource-use complementarity.  more » « less
Award ID(s):
2021898
PAR ID:
10332602
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
288
Issue:
1958
ISSN:
0962-8452
Page Range / eLocation ID:
20211290
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Coastal marshes are globally important, carbon dense ecosystems simultaneously maintained and threatened by sea‐level rise. Warming temperatures may increase wetland plant productivity and organic matter accumulation, but temperature‐modulated feedbacks between productivity and decomposition make it difficult to assess how wetlands and their thick, organic‐rich soils will respond to climate warming. Here, we actively increased aboveground plant‐surface and belowground soil temperatures in two marsh plant communities, and found that a moderate amount of warming (1.7°C above ambient temperatures) consistently maximized root growth, marsh elevation gain, and belowground carbon accumulation. Marsh elevation loss observed at higher temperatures was associated with increased carbon mineralization and increased microtopographic heterogeneity, a potential early warning signal of marsh drowning. Maximized elevation and belowground carbon accumulation for moderate warming scenarios uniquely suggest linkages between metabolic theory of individuals and landscape‐scale ecosystem resilience and function, but our work indicates nonpermanent benefits as global temperatures continue to rise. 
    more » « less
  2. Channel incision degrades ecosystems by lowering water tables and disconnecting floodplains. Stream restoration often aims to reverse these impacts. However, projects typically receive minimal monitoring, and treatment effectiveness has not been validated. We used trait‐based analysis to evaluate whether two stream restoration techniques—beaver dam analogs (BDAs) and plug‐and‐ponds—raised water tables and increased overbank flooding, whether these altered environmental filters facilitated recovery of riparian plant communities, and how reassembly impacted the representation of traits that influence ecosystem function. We report on a before‐after‐control‐impact study and Bayesian analysis that estimated the probability that treatments affected riparian plant functional diversity and composition. We found a high probability (0.99 and 0.97, respectively) that BDAs decreased functional dispersion by ≥50% and plug‐and‐ponds decreased dispersion by ≥30%. Both treatments increased the relative abundance of high moisture use plants, wetland plants, and plants with high anaerobic tolerance. For example, BDAs increased the relative abundance of obligate wetland plants by 100%, and plug‐and‐ponds increased the relative abundance of facultative wetland plants by 105%, on average. These results suggest treatments modified environmental filters and recovered riparian plant communities. Ecosystem function was likely altered as the streamside plant community reassembled. Small increases in functional divergence suggest both treatments increased resource use efficiency, and we found a high probability of small treatment effect sizes (<20%) related to changes in community‐level C:N and nitrogen fixation. Our results demonstrate trait‐based analysis can detect a rapid response to restoration and offer a cost‐effective monitoring approach to compare treatments across space and time. 
    more » « less
  3. Abstract Evolutionary relatedness underlies patterns of functional diversity in the natural world. Hyperspectral remote sensing has the potential to detect these patterns in plants through inherited patterns of leaf reflectance spectra. We collected leaf reflectance data across the California flora from plants grown in a common garden. Regions of the reflectance spectra vary in the depth and strength of phylogenetic signal. We also show that these differences are much greater than variation due to the geographic origin of the plant. At the phylogenetic extent of the California flora, spectral variation explained by the combination of ecotypic variation (divergent evolution) and convergent evolution of disparate lineages was minimal (3%–7%) but statistically significant. Interestingly, at the extent of a single genus (Arctostaphylos) no unique variation could be attributed to geographic origin. However, up to 18% of the spectral variation amongArctostaphylosindividuals was shared between phylogeny and intraspecific variation stemming from ecotypic differences (i.e., geographic origin). Future studies could conduct more structured experiments (e.g., transplants or observations along environmental gradients) to disentangle these sources of variation and include other intraspecific variation (e.g., plasticity). We constrain broad‐scale spectral variability due to ecotypic sources, providing further support for the idea that phylogenetic clusters of species might be detectable through remote sensing. Phylogenetic clusters could represent a valuable dimension of biodiversity monitoring and detection. 
    more » « less
  4. Abstract Plant productivity varies due to environmental heterogeneity, and theory suggests that plant diversity can reduce this variation. While there is strong evidence of diversity effects on temporal variability of productivity, whether this mechanism extends to variability across space remains elusive. Here we determine the relationship between plant diversity and spatial variability of productivity in 83 grasslands, and quantify the effect of experimentally increased spatial heterogeneity in environmental conditions on this relationship. We found that communities with higher plant species richness (alpha and gamma diversity) have lower spatial variability of productivity as reduced abundance of some species can be compensated for by increased abundance of other species. In contrast, high species dissimilarity among local communities (beta diversity) is positively associated with spatial variability of productivity, suggesting that changes in species composition can scale up to affect productivity. Experimentally increased spatial environmental heterogeneity weakens the effect of plant alpha and gamma diversity, and reveals that beta diversity can simultaneously decrease and increase spatial variability of productivity. Our findings unveil the generality of the diversity-stability theory across space, and suggest that reduced local diversity and biotic homogenization can affect the spatial reliability of key ecosystem functions. 
    more » « less
  5. Abstract Which processes drive the productivity benefits of biodiversity remain a critical, but unanswered question in ecology. We tested whether the soil microbiome mediates the diversity‐productivity relationships among late successional plant species. We found that productivity increased with plant richness in diverse soil communities, but not with low‐diversity mixtures of arbuscular mycorrhizal fungi or in pasteurised soils. Diversity‐interaction modelling revealed that pairwise interactions among species best explained the positive diversity‐productivity relationships, and that transgressive overyielding resulting from positive complementarity was only observed with the late successional soil microbiome, which was both the most diverse and exhibited the strongest community differentiation among plant species. We found evidence that both dilution/suppression from host‐specific pathogens and microbiome‐mediated resource partitioning contributed to positive diversity‐productivity relationships and overyielding. Our results suggest that re‐establishment of a diverse, late successional soil microbiome may be critical to the restoration of the functional benefits of plant diversity following anthropogenic disturbance. 
    more » « less