Land plants develop highly diversified shoot architectures, all of which are derived from the pluripotent stem cells in shoot apical meristems (SAMs). As sustainable resources for continuous organ formation in the aboveground tissues, SAMs play an important role in determining plant yield and biomass production. In this review, we summarize recent advances in understanding one group of key regulators – the HAIRY MERISTEM (HAM) family GRAS domain proteins – in shoot meristems. We highlight the functions of HAM family members in dictating shoot stem cell initiation and proliferation, the signaling cascade that shapes HAM expression domains in shoot meristems, and the conservation and diversification of HAM family members in land plants. We also discuss future directions that potentially lead to a more comprehensive view of the HAM gene family and stem cell homeostasis in land plants. 
                        more » 
                        « less   
                    
                            
                            Function and Regulation of microRNA171 in Plant Stem Cell Homeostasis and Developmental Programing
                        
                    
    
            MicroRNA171 (miR171), a group of 21-nucleotide single-strand small RNAs, is one ancient and conserved microRNA family in land plants. This review focuses on the recent progress in understanding the role of miR171 in plant stem cell homeostasis and developmental patterning, and the regulation of miR171 by developmental cues and environmental signals. Specifically, miR171 regulates shoot meristem activity and phase transition through repressing the HAIRYMERISTEM (HAM) family genes. In the model species Arabidopsis, miR171 serves as a short-range mobile signal, which initiates in the epidermal layer of shoot meristems and moves downwards within a limited distance, to pattern the apical-basal polarity of gene expression and drive stem cell dynamics. miR171 levels are regulated by light and various abiotic stresses, suggesting miR171 may serve as a linkage between environmental factors and cell fate decisions. Furthermore, miR171 family members also demonstrate both conserved and lineage-specific functions in land plants, which are summarized and discussed here. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1931114
- PAR ID:
- 10332631
- Date Published:
- Journal Name:
- International Journal of Molecular Sciences
- Volume:
- 23
- Issue:
- 5
- ISSN:
- 1422-0067
- Page Range / eLocation ID:
- 2544
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            SUMMARY The shoot apical meristems (SAMs) of land plants are crucial for plant growth and organ formation. In several angiosperms, theHAIRY MERISTEM(HAM) genes function as key regulators that control meristem development and stem cell homeostasis. To date, the origin and evolutionary history of the HAM family in land plants remains unclear. Potentially shared and divergent functions of HAM family members from angiosperms and non‐angiosperms are also not known. In constructing a comprehensive phylogeny of the HAM family, we show that HAM proteins are widely present in land plants and that HAM proteins originated prior to the divergence of bryophytes. The HAM family was duplicated in a common ancestor of angiosperms, leading to two distinct groups: type I and type II. Type‐II HAM members are widely present in angiosperms, whereas type‐I HAM members were independently lost in different orders of monocots. Furthermore, HAM members from angiosperms and non‐angiosperms (including bryophytes, lycophytes, ferns and gymnosperms) are able to replace the role of the type‐IIHAMgenes in Arabidopsis, maintaining established SAMs and promoting the initiation of new stem cell niches. Our results uncover the conserved functions of HAM family members and reveal the conserved regulatory mechanisms underlying HAM expression patterning in meristems, providing insight into the evolution of key stem cell regulators in land plants.more » « less
- 
            SUMMARY CLAVATA3/EMBRYO SURROUNDING REGION (CLE) peptides are 12–13 amino acid‐long peptides that serve as positional signals in plants. The core CLE signaling module consists of a CLE peptide and a leucine‐rich repeat receptor‐like kinase, but in flowering plants, WUSCHEL‐RELATED HOMEOBOX (WOX) transcription factors are also incorporated to form negative feedback loops that regulate stem cell maintenance in the shoot and root. It is not known whenWOXgenes were co‐opted into CLE signaling pathways, only that mosses and liverworts do not require WOX for CLE‐regulated stem cell activities. We identified 11 CLE‐encoding genes in the Ceratopteris genome, including one (CrCLV3) most similar to shoot meristem CLE peptide CLAVATA3. We performed the first functional characterization of a fern CLE using techniques including RNAi knockdown and synthetic peptide dosage. We found that CrCLV3 promotes cell proliferation and stem cell identity in the gametophyte meristem. Importantly, we provide evidence for CrCLV3 regulation of theWOXgeneCrWOXAduring the developmental stage when female gametangium formation begins. These discoveries open a new avenue for CLE peptide research in the fern and clarify the evolutionary timeline of CLE‐WOX signaling in land plants.more » « less
- 
            Abstract Understanding how evolution shapes genetic networks to create new developmental forms is a central question in biology. Flowering shoot (inflorescence) architecture varies significantly across plant families and is a key target of genetic engineering efforts in many crops1–4. Asteraceae (sunflower family), comprising 10% of flowering plants, all have capitula, a novel inflorescence that mimics a single flower5,6. Asteraceae capitula are highly diverse but are thought to have evolved once via unknown mechanisms7,8. During capitulum development, shoot stem cells undergo prolonged proliferation to accommodate the formation of intersecting spirals of flowers (florets) along the disk-shaped head9,10. Here we show that capitulum evolution paralleled decreases in CLAVATA3 (CLV3) peptide signaling, a conserved repressor of stem cell proliferation. We trace this to novel amino acid changes in the mature CLV3 peptide which decrease receptor binding and downstream transcriptional outputs. Using genetically tractable Asteraceae models, we show that reversion ofCLV3to a more active form impairs Asteraceae stem cell regulation and capitulum development. Additionally, we trace the evolution ofCLV3and its receptors across the Asterales allowing inferences on capitulum evolution within this lineage. Our findings reveal novel mechanisms driving evolutionary innovation in plant reproduction and suggest new approaches for genetic engineering in crop species.more » « less
- 
            Messenger RNAs (mRNAs) function as mobile signals for cell-to-cell communication in multicellular organisms. The KNOTTED1 (KN1) homeodomain family transcription factors act non–cell autonomously to control stem cell maintenance in plants through cell-to-cell movement of their proteins and mRNAs through plasmodesmata; however, the mechanism of mRNA movement is largely unknown. We show that cell-to-cell movement of a KN1 mRNA requires ribosomal RNA–processing protein 44A (AtRRP44A), a subunit of the RNA exosome that processes or degrades diverse RNAs in eukaryotes. AtRRP44A can interact with plasmodesmata and mediates the cell-to-cell trafficking of KN1 mRNA, and genetic analysis indicates that AtRRP44A is required for the developmental functions of SHOOT MERISTEMLESS, an Arabidopsis KN1 homolog. Our findings suggest that AtRRP44A promotes mRNA trafficking through plasmodesmata to control stem cell–dependent processes in plants.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    