skip to main content


Title: Fear and loathing in the pelagic: How the seascape of fear impacts the biological carbon pump
Award ID(s):
1637632
NSF-PAR ID:
10332751
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Limnology and Oceanography
Volume:
67
Issue:
6
ISSN:
0024-3590
Page Range / eLocation ID:
1238 to 1256
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Social support during exposure-based psychotherapy is believed to diminish fear and improve therapy outcomes. However, some clinical trials challenge that notion. Underlying mechanisms remain unknown, hindering the understanding of benefits and pitfalls of such approach. To study social buffering during fear extinction, we developed a behavioral model in which partner’s presence decreases response to fear-associated stimuli. To identify the neuronal background of this phenomenon, we combined behavioral testing with c-Fos mapping, optogenetics, and chemogenetics. We found that the presence of a partner during fear extinction training causes robust inhibition of freezing; the effect, however, disappears in subjects tested individually on the following day. It is accompanied by lowered activation of the prelimbic (PL) and anterior cingulate (ACC) but not infralimbic (IL) cortex. Accordingly, blocking of IL activity left social buffering intact. Similarly, inhibition of the ventral hippocampus–PL pathway, suppressing fear response after prolonged extinction training, did not diminish the effect. In contrast, inhibition of the ACC–central amygdala pathway, modulating social behavior, blocked social buffering. By reporting that social modulation of fear inhibition is transient and insensitive to manipulation of the fear extinction-related circuits, we show that the mechanisms underlying social buffering during extinction are different from those of individual extinction.

     
    more » « less
  2. Predator–prey interactions are a key feature of ecosystems and often chemically mediated, whereby individuals detect molecules in their environment that inform whether they should attack or defend. These molecules are largely unidentified, and their discovery is important for determining their ecological role in complex trophic systems. Homarine and trigonelline are two previously identified blue crab (Callinectes sapidus) urinary metabolites that cause mud crabs (Panopeus herbstii) to seek refuge, but it was unknown whether these molecules influence other species within this oyster reef system. In the current study, homarine, trigonelline, and blue crab urine were tested on juvenile oysters (Crassostrea virginica) to ascertain if the same molecules known to alter mud crab behavior also affect juvenile oyster morphology, thus mediating interactions between a generalist predator, a mesopredator, and a basal prey species. Oyster juveniles strengthened their shells in response to blue crab urine and when exposed to homarine and trigonelline in combination, especially at higher concentrations. This study builds upon previous work to pinpoint specific molecules from a generalist predator’s urine that induce defensive responses in two marine prey from different taxa and trophic levels, supporting the hypothesis that common fear molecules exist in ecological systems. 
    more » « less
  3. Gardner, Stephanie (Ed.)
    Fear of negative evaluation (FNE) is the primary factor causing student anxiety in active learning. This study of 566 undergraduates establishes that LGBTQ+, first-generation, and disabled students disproportionately experience FNE, which causes students to overthink their responses and reduces their participation in class.

     
    more » « less
  4. Flight initiation distance (FID), the distance at which an organism flees from an approaching threat, is an ecological metric of cost–benefit functions of escape decisions. We adapted the FID paradigm to investigate how fast- or slow-attacking “virtual predators” constrain escape decisions. We show that rapid escape decisions rely on “reactive fear” circuits in the periaqueductal gray and midcingulate cortex (MCC), while protracted escape decisions, defined by larger buffer zones, were associated with “cognitive fear” circuits, which include posterior cingulate cortex, hippocampus, and the ventromedial prefrontal cortex, circuits implicated in more complex information processing, cognitive avoidance strategies, and behavioral flexibility. Using a Bayesian decision-making model, we further show that optimization of escape decisions under rapid flight were localized to the MCC, a region involved in adaptive motor control, while the hippocampus is implicated in optimizing decisions that update and control slower escape initiation. These results demonstrate an unexplored link between defensive survival circuits and their role in adaptive escape decisions. 
    more » « less