skip to main content

This content will become publicly available on February 1, 2023

Title: Non-BPS floating branes and bubbling geometries
A bstract We derive a non-BPS linear ansatz using the charged Weyl formalism in string and M-theory backgrounds. Generic solutions are static and axially-symmetric with an arbitrary number of non-BPS sources corresponding to various brane, momentum and KKm charges. Regular sources are either four-charge non-extremal black holes or smooth non-BPS bubbles. We construct several families such as chains of non-extremal black holes or smooth non-BPS bubbling geometries and study their physics. The smooth horizonless geometries can have the same mass and charges as non-extremal black holes. Furthermore, we find examples that scale towards the four-charge BPS black hole when the non-BPS parameters are taken to be small, but the horizon is smoothly resolved by adding a small amount of non-extremality.
Award ID(s):
Publication Date:
Journal Name:
Journal of High Energy Physics
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract We construct a family of smooth charged bubbling solitons in $$ \mathbbm{M} $$ M 4 ×T 2 , four-dimensional Minkowski with a two-torus. The solitons are characterized by a degeneration pattern of the torus along a line in $$ \mathbbm{M} $$ M 4 defining a chain of topological cycles. They live in the same parameter regime as non-BPS non-extremal four-dimensional black holes, and are ultracompact with sizes ranging from miscroscopic to macroscopic scales. The six-dimensional framework can be embedded in type IIB supergravity where the solitons are identified with geometric transitions of non-BPS D1-D5-KKm bound states. Interestingly, the geometries admit a minimal surface that smoothly opens up to a bubbly end of space. Away from the solitons, the solutions are indistinguishable from a new class of singular geometries. By taking a limit of large number of bubbles, the soliton geometries can be matched arbitrarily close to the singular spacetimes. This provides the first classical resolution of a curvature singularity beyond the framework of supersymmetry and supergravity by blowing up topological cycles wrapped by fluxes at the vicinity of the singularity.
  2. A bstract We construct the first smooth bubbling geometries using the Weyl formalism. The solutions are obtained from Einstein theory coupled to a two-form gauge field in six dimensions with two compact directions. We classify the charged Weyl solutions in this framework. Smooth solutions consist of a chain of Kaluza-Klein bubbles that can be neutral or wrapped by electromagnetic fluxes, and are free of curvature and conical singularities. We discuss how such topological structures are prevented from gravitational collapse without struts. When embedded in type IIB, the class of solutions describes D1-D5-KKm solutions in the non-BPS regime, and the smooth bubbling solutions have the same conserved charges as a static four-dimensional non-extremal Cvetic-Youm black hole.
  3. A bstract We construct a family of non-supersymmetric extremal black holes and their horizonless microstate geometries in four dimensions. The black holes can have finite angular momentum and an arbitrary charge-to-mass ratio, unlike their supersymmetric cousins. These features make them and their microstate geometries astrophysically relevant. Thus, they provide interesting prototypes to study deviations from Kerr solutions caused by new horizon-scale physics. In this paper, we compute the gravitational multipole structure of these solutions and compare them to Kerr black holes. The multipoles of the black hole differ significantly from Kerr as they depend non-trivially on the charge-to-mass ratio. The horizonless microstate geometries (that are comparable in size to a black hole) have a similar multipole structure as their corresponding black hole, with deviations to the black hole multipole values set by the scale of their microstructure.
  4. Abstract Due to the failure of thermodynamics for low temperature near-extremal black holes, it has long been conjectured that a ‘thermodynamic mass gap’ exists between an extremal black hole and the lightest near-extremal state. For non-supersymmetric near-extremal black holes in Einstein gravity with an AdS 2 throat, no such gap was found. Rather, at that energy scale, the spectrum exhibits a continuum of states, up to non-perturbative corrections. In this paper, we compute the partition function of near-BPS black holes in supergravity where the emergent, broken, symmetry is PSU (1, 1|2). To reliably compute this partition function, we show that the gravitational path integral can be reduced to that of a N = 4 supersymmetric extension of the Schwarzian theory, which we define and exactly quantize. In contrast to the non-supersymmetric case, we find that black holes in supergravity have a mass gap and a large extremal black hole degeneracy consistent with the Bekenstein–Hawking area. Our results verify a plethora of string theory conjectures, concerning the scale of the mass gap and the counting of extremal micro-states.
  5. A bstract We construct smooth static bubble solutions, denoted as topological stars, in five-dimensional Einstein-Maxwell theories which are asymptotic to ℝ 1 , 3 ×S 1 . The bubbles are supported by allowing electromagnetic fluxes to wrap smooth topological cycles. The solutions live in the same regime as non-extremal static charged black strings, that reduce to black holes in four dimensions. We generalize to multi-body configurations on a line by constructing closed-form generalized charged Weyl solutions in the same theory. Generic solutions consist of topological stars and black strings stacked on a line, that are wrapped by electromagnetic fluxes. We embed the solutions in type IIB String Theory on S 1 ×T 4 . In this framework, the charged Weyl solutions provide a novel class in String Theory of multiple charged objects in the non-supersymmetric and non-extremal black hole regime.