skip to main content

Title: Spherical conical metrics and harmonic maps to spheres
A spherical conical metric g g on a surface Σ \Sigma is a metric of constant curvature 1 1 with finitely many isolated conical singularities. The uniformization problem for such metrics remains largely open when at least one of the cone angles exceeds 2 π 2\pi . The eigenfunctions of the Friedrichs Laplacian Δ g \Delta _g with eigenvalue λ = 2 \lambda =2 play a special role in this problem, as they represent local obstructions to deformations of the metric g g in the class of spherical conical metrics. In the present paper we apply the theory of multivalued harmonic maps to spheres to the question of existence of such eigenfunctions. In the first part we establish a new criterion for the existence of 2 2 -eigenfunctions, given in terms of a certain meromorphic data on Σ \Sigma . As an application we give a description of all 2 2 -eigenfunctions for metrics on the sphere with at most three conical singularities. The second part is an algebraic construction of metrics with large number of 2 2 -eigenfunctions via the deformation of multivalued harmonic maps. We provide new explicit examples of metrics with many 2 2 -eigenfunctions via both approaches, and describe the general algorithm to find metrics with arbitrarily large number of 2 2 -eigenfunctions.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Transactions of the American Mathematical Society
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We show that for a generic conformal metric perturbation of a compact hyperbolic 3-manifold  $$\Sigma $$ Σ with Betti number $$b_1$$ b 1 , the order of vanishing of the Ruelle zeta function at zero equals $$4-b_1$$ 4 - b 1 , while in the hyperbolic case it is equal to $$4-2b_1$$ 4 - 2 b 1 . This is in contrast to the 2-dimensional case where the order of vanishing is a topological invariant. The proof uses the microlocal approach to dynamical zeta functions, giving a geometric description of generalized Pollicott–Ruelle resonant differential forms at 0 in the hyperbolic case and using first variation for the perturbation. To show that the first variation is generically nonzero we introduce a new identity relating pushforwards of products of resonant and coresonant 2-forms on the sphere bundle $$S\Sigma $$ S Σ with harmonic 1-forms on  $$\Sigma $$ Σ . 
    more » « less
  2. null (Ed.)
    Recently Fraser and Schoen showed that the solution of a certain extremal Steklov eigenvalue problem on a compact surface with boundary can be used to generate a free boundary minimal surface, i.e. , a surface contained in the ball that has (i) zero mean curvature and (ii) meets the boundary of the ball orthogonally (doi: 10.1007/s00222-015-0604-x ). In this paper, we develop numerical methods that use this connection to realize free boundary minimal surfaces. Namely, on a compact surface, Σ, with genus γ and b boundary components, we maximize σ j (Σ, g )  L ( ∂ Σ, g ) over a class of smooth metrics, g , where σ j (Σ, g ) is the j th nonzero Steklov eigenvalue and L ( ∂ Σ, g ) is the length of ∂ Σ. Our numerical method involves (i) using conformal uniformization of multiply connected domains to avoid explicit parameterization for the class of metrics, (ii) accurately solving a boundary-weighted Steklov eigenvalue problem in multi-connected domains, and (iii) developing gradient-based optimization methods for this non-smooth eigenvalue optimization problem. For genus γ = 0 and b = 2, …, 9, 12, 15, 20 boundary components, we numerically solve the extremal Steklov problem for the first eigenvalue. The corresponding eigenfunctions generate a free boundary minimal surface, which we display in striking images. For higher eigenvalues, numerical evidence suggests that the maximizers are degenerate, but we compute local maximizers for the second and third eigenvalues with b = 2 boundary components and for the third and fifth eigenvalues with b = 3 boundary components. 
    more » « less
  3. Abstract

    Determinantal point processes exhibit an inherent repulsive behavior, thus providing examples of very evenly distributed point sets on manifolds. In this paper, we study the so‐called harmonic ensemble, defined in terms of Laplace eigenfunctions on the sphere and the flat torus , and the so‐called spherical ensemble on , which originates in random matrix theory. We extend results of Beltrán, Marzo, and Ortega‐Cerdà on the Riesz ‐energy of the harmonic ensemble to the nonsingular regime , and as a corollary find the expected value of the spherical cap discrepancy via the Stolarsky invariance principle. We find the expected value of the discrepancy with respect to axis‐parallel boxes and Euclidean balls of the harmonic ensemble on . We also show that the spherical ensemble and the harmonic ensemble on and with points attain the optimal rate in expectation in the Wasserstein metric , in contrast to independent and identically distributed random points, which are known to lose a factor of .

    more » « less
  4. Abstract

    The question of global existence versus finite-time singularity formation is considered for the generalized Constantin–Lax–Majda equation with dissipationΛσ, whereΛσˆ=|k|σ, both for the problem on the circlex[π,π]and the real line. In the periodic geometry, two complementary approaches are used to prove global-in-time existence of solutions forσ1and all real values of an advection parameterawhen the data is small. We also derive new analytical solutions in both geometries whena = 0, and on the real line whena=1/2, for various values ofσ. These solutions exhibit self-similar finite-time singularity formation, and the similarity exponents and conditions for singularity formation are fully characterized. We revisit an analytical solution on the real line due to Schochet fora = 0 andσ = 2, and reinterpret it terms of self-similar finite-time collapse. The analytical solutions on the real line allow finite-time singularity formation for arbitrarily small data, even for values ofσthat are greater than or equal to one, thereby illustrating a critical difference between the problems on the real line and the circle. The analysis is complemented by accurate numerical simulations, which are able to track the formation and motion of singularities in the complex plane. The computations validate and build upon the analytical theory.

    more » « less
  5. We complete the proof of the Generalized Smale Conjecture, apart from the case of R P 3 RP^3 , and give a new proof of Gabai’s theorem for hyperbolic 3 3 -manifolds. We use an approach based on Ricci flow through singularities, which applies uniformly to spherical space forms, except S 3 S^3 and R P 3 RP^3 , as well as hyperbolic manifolds, to prove that the space of metrics of constant sectional curvature is contractible. As a corollary, for such a 3 3 -manifold X X , the inclusion Isom ⁡ ( X , g ) → Diff ⁡ ( X ) \operatorname {Isom}(X,g)\rightarrow \operatorname {Diff}(X) is a homotopy equivalence for any Riemannian metric g g of constant sectional curvature. 
    more » « less