Our previous papers introduce topological notions of normal crossings symplectic divisor and variety, show that they are equivalent, in a suitable sense, to the corresponding geometric notions, and establish a topological smoothability criterion for normal crossings symplectic varieties. The present paper constructs a blowup, a complex line bundle, and a logarithmic tangent bundle naturally associated with a normal crossings symplectic divisor and determines the Chern class of the last bundle. These structures have applications in constructions and analysis of various moduli spaces. As a corollary of the Chern class formula for the logarithmic tangent bundle, we refine Aluffi’s formula for the Chern class of the tangent bundle of the blowup at a complete intersection to account for the torsion and extend it to the blowup at the deepest stratum of an arbitrary normal crossings divisor.
more »
« less
Schauder estimates for equations with cone metrics, II
We continue our work on the linear theory for equations with conical singularities. We derive interior Schauder estimates for linear elliptic and parabolic equations with a background Kähler metric of conical singularities along a divisor of simple normal crossings. As an application, we prove the short-time existence of the conical Kähler–Ricci flow with conical singularities along a divisor with simple normal crossings.
more »
« less
- Award ID(s):
- 2203607
- PAR ID:
- 10511069
- Publisher / Repository:
- Math. Sci. Publ.
- Date Published:
- Journal Name:
- Analysis & PDE
- Volume:
- 17
- Issue:
- 3
- ISSN:
- 2157-5045
- Page Range / eLocation ID:
- 757 to 830
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We first introduce and study the notion of multi-weighted blow-ups, which is later used to systematically construct an explicit yet efficient algorithm for functorial logarithmic resolution in characteristic zero, in the sense of Hironaka. Specifically, for a singular, reduced closed subscheme $$X$$ of a smooth scheme $$Y$$ over a field of characteristic zero, we resolve the singularities of $$X$$ by taking proper transforms $$X_i \subset Y_i$$ along a sequence of multi-weighted blow-ups $$Y_N \to Y_{N-1} \to \dotsb \to Y_0 = Y$$ which satisfies the following properties: (i) the $$Y_i$$ are smooth Artin stacks with simple normal crossing exceptional loci; (ii) at each step we always blow up the worst singular locus of $$X_i$$, and witness on $$X_{i+1}$$ an immediate improvement in singularities; (iii) and finally, the singular locus of $$X$$ is transformed into a simple normal crossing divisor on $$X_N$$. Comment: Final published versionmore » « less
-
We show that the underlying complex manifold of a complete non-compact two-dimensional shrinking gradient Kähler-Ricci soliton (M,g,X) with soliton metric g with bounded scalar curvature Rg whose soliton vector field X has an integral curve along which Rg↛0 is biholomorphic to either C×P1 or to the blowup of this manifold at one point. Assuming the existence of such a soliton on this latter manifold, we show that it is toric and unique. We also identify the corresponding soliton vector field. Given these possibilities, we then prove a strong form of the Feldman-Ilmanen-Knopf conjecture for finite time Type I singularities of the Kähler-Ricci flow on compact Kähler surfaces, leading to a classification of the bubbles of such singularities in this dimension.more » « less
-
In a previous paper (Farajzadeh-Tehrani in Geom Topol 26:989–1075, 2022), for any logarithmic symplectic pair (X, D) of a symplectic manifold X and a simple normal crossings symplectic divisor D, we introduced the notion of log pseudo-holomorphic curve and proved a compactness theorem for the moduli spaces of stable log curves. In this paper, we introduce a natural Fredholm setup for studying the deformation theory of log (and relative) curves. As a result, we obtain a logarithmic analog of the space of Ruan–Tian perturbations for these moduli spaces. For a generic compatible pair of an almost complex structure and a log perturbation term, we prove that the subspace of simple maps in each stratum is cut transversely. Such perturbations enable a geometric construction of Gromov–Witten type invariants for certain semi-positive pairs (X, D) in arbitrary genera. In future works, we will use local perturbations and a gluing theorem to construct log Gromov–Witten invariants of arbitrary such pair (X, D).more » « less
-
Abstract We extend the decomposition theorem for numerically K -trivial varieties with log terminal singularities to the Kähler setting. Along the way we prove that all such varieties admit a strong locally trivial algebraic approximation, thus completing the numerically K -trivial case of a conjecture of Campana and Peternell.more » « less
An official website of the United States government

