skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sequences of seismic and aseismic slip on bimaterial faults show dominant rupture asymmetry and potential for elevated seismic hazard
Award ID(s):
1753249
PAR ID:
10332932
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Earth and Planetary Science Letters
Volume:
593
Issue:
C
ISSN:
0012-821X
Page Range / eLocation ID:
117648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Seismic tomography is the most abundant source of information about the internal structure of the Earth at scales ranging from a few meters to thousands of kilometers. It constrains the properties of active volcanoes, earthquake fault zones, deep reservoirs and storage sites, glaciers and ice sheets, or the entire globe. It contributes to outstanding societal problems related to natural hazards, resource exploration, underground storage, and many more. The recent advances in seismic tomography are being translated to nondestructive testing, medical ultrasound, and helioseismology. Nearly 50 yr after its first successful applications, this article offers a snapshot of modern seismic tomography. Focused on major challenges and particularly promising research directions, it is intended to guide both Earth science professionals and early-career scientists. The individual contributions by the coauthors provide diverse perspectives on topics that may at first seem disconnected but are closely tied together by a few coherent threads: multiparameter inversion for properties related to dynamic processes, data quality, and geographic coverage, uncertainty quantification that is useful for geologic interpretation, new formulations of tomographic inverse problems that address concrete geologic questions more directly, and the presentation and quantitative comparison of tomographic models. It remains to be seen which of these problems will be considered solved, solved to some extent, or practically unsolvable over the next decade. 
    more » « less
  2. SUMMARY The dependence of seismic wave speeds on propagation or polarization direction, called seismic anisotropy, is a relatively direct indicator of mantle deformation and flow. Mantle seismic anisotropy is often inferred from measurements of shear-wave splitting. A number of standard techniques to measure shear-wave splitting have been applied globally; for example, *KS splitting is often used to measure upper mantle anisotropy. In order to obtain robust constraints on anisotropic geometry, it is necessary to sample seismic anisotropy from different directions, ideally using different seismic phases with different incidence angles. However, many standard analysis techniques can only be applied for certain epicentral distances and source–receiver geometries. To search for new ways to detect mantle anisotropy, instead of focusing on the sensitivity of individual phases, we investigate the wavefield as a whole: we apply a ‘wavefield differencing’ approach to (systematically) understand what parts of the seismic wavefield are most affected by splitting due to seismic anisotropy in the mantle. We analyze differences between synthetic global wavefields calculated for isotropic and anisotropic input models, incorporating seismic anisotropy at different depths. Our results confirm that the seismic phases that are commonly used in splitting techniques are indeed strongly influenced by mantle anisotropy. However, we also identify less commonly used phases whose waveforms reflect the effects of anisotropy. For example, PS is strongly affected by splitting due to seismic anisotropy in the upper mantle. We show that PS can be used to fill in gaps in global coverage in shear-wave splitting data sets (for example, beneath ocean basins). We find that PcS is also a promising phase, and present a proof-of-concept example of PcS splitting analysis across the contiguous United States using an array processing approach. Because PcS is recorded at much shorter distances than *KS phases, PcS splitting can therefore fill in gaps in backazimuthal coverage. Our wavefield differencing results further hint at additional potential novel methods to detect and characterize splitting due to mantle seismic anisotropy. 
    more » « less
  3. The temporal variation of elastic property of the bulk material surrounding the fault is considered an important contribution to the observed co-seismic velocity reduction and interseismic healing. Paglialunga et al. [2021] found that as fault normal stress increases, co-seismic velocity reduction becomes larger because more cracks reopen with higher stress drops. Larger normal stress can lead to smaller nucleation size and contribute to larger co-seismic slip. By contrast, with larger co-seismic velocity reduction and interseismic healing, more slow slip events can propagate in the seismogenic zone [Thakur and Huang, 2021], because the temporal velocity change related to fault zone damage modulates earthquake nucleation. Hence, fault normal stress and temporal damage zone structure evolution have opposite influences on the spatial distribution and recurrence intervals of earthquakes. We conducted 2-D anti-plane fully-dynamic seismic cycle simulations and explored the effects of fault normal stress on seismic cycle when there is coseismic damage and interseismic healing in the fault damage zone. The normal stress is in a range of 40-70 MPa and the co-seismic rigidity reduction is in a range of 5-8%. We find larger normal stress results in larger co-seismic slip and fewer slow slip events, while more co-seismic velocity reduction and interseismic healing leads to more partial ruptures as well as slow slip events. With the increase of both normal stress and seismic velocity change, more regular earthquakes occur and slow slip events gradually disappear. For the selected parameter space, the influence of seismic velocity change is not as significant as the effect of normal stress. However, fault zone maturity or the initial rigidity of fault damage zones should also affect the competitive relationship between normal stress and seismic velocity change, and we will characterize earthquakes and slow-slip events in immature and mature fault damage zones when both on-fault normal stress and off-fault seismic velocity vary over earthquake cycles. 
    more » « less
  4. We investigate the feasibility of using trees as a seismic meta-material that could shield the LIGO detectors from seismic activity. This seismic cloak would reflect low frequency surface waves away from the detector, thereby increasing the sensitivity of the detectors. This study models the energy transfer from surface waves as they pass through the bandgap filters designed from trees in different arrangements. The attenuation and rejection will hopefully serve to cloak the LIGO detectors from seismic activity. This work could have future impact on high sensitivity detectors, leading to more detections of merger events. 
    more » « less