Quantitative reasoning (QR) is the ability to apply mathematics and statistics in the context of real-life situations and scientific problems. It is an important skill that students require to make sense of complex biological phenomena and handle large datasets in biology courses and research as well as in professional contexts. Biology educators and researchers are responding to the increasing need for QR through curricular reforms and research into biology education. This qualitative study investigates how undergraduate biology instructors implement QR into their teaching. The study used pedagogical content knowledge (PCK) and a QR framework to explore instructors’ instructional goals, strategies, and perceived challenges and affordances in undergraduate biology instruction. The participants included 21 biology faculty across various institutions in the United States, who intentionally integrated QR in their instruction. Semi-structured interviews were used to collect data focusing on participants’ beliefs, experiences, and classroom practices. Findings indicated that instructors adapt their QR instruction based on course level and student preparedness. In lower-division courses, strategies emphasized building foundational skills, reducing math anxiety, and using scaffolded instruction to promote confidence. In upper-division courses, instructors expected greater math fluency but still encountered a wide range of student abilities, prompting a focus on correcting misconceptions in integrating math knowledge and fostering deeper conceptual understanding in biology. Many instructors reported that their personal and educational experiences, especially struggles with math, often shaped their inclusive and empathetic teaching practices. Additionally, instructors’ research backgrounds influenced instructional design, particularly in the use of authentic data, statistical tools, and real-world applications. Instructors’ teaching experiences led to refinement in lesson planning, pacing, and active learning strategies. Despite their efforts, instructors faced both internal and external challenges in implementing QR, including discomfort with teaching math, time limitations, student resistance, and institutional barriers. However, affordances such as departmental support, interdisciplinary collaboration, and curricular flexibility helped to overcome some of these challenges. This study highlights the complex relationships between instructors’ experiences, beliefs, and contextual factors in shaping QR instruction. This calls for professional development that supports reflective practice, builds interdisciplinary competence, and promotes instructional strategies that bridge biology and mathematics and will help instructors design a learning environment that better support students’ development of QR skills. These findings offer valuable guidance for professional development aimed at helping biology instructors incorporate quantitative reasoning into their teaching. Such efforts can better equip students to meet the quantitative demands of modern biology and promote their continued engagement in STEM fields through more inclusive and integrated instructional approaches. 
                        more » 
                        « less   
                    
                            
                            Instructional decision making in a gateway Quantitative Reasoning course
                        
                    
    
            Many educators and professional organizations recommend Quantitative Reasoning as the best entry-level postsecondary mathematics course for non-STEM majors. However, novice and veteran instructors who have no prior experience in teaching a QR course often express their ignorance of the content to choose for this course, the instruction to offer students, and the assessments to measure student learning. We conducted a case study to investigate the initial implementation of an entry-level university quantitative reasoning course during fall semester, 2018. The participants were the course instructor and students. We examined the instructor’s motives and actions and the students’ responses to the course. The instructor had no prior experience teaching a QR course but did have 15 years of experience teaching student-centered mathematics. Data included course artifacts, class observations, an instructor interview, and students’ written reflections. Because this was a new course—and to adapt to student needs—the instructor employed his instructional autonomy and remained flexible in designing and enacting the course content, instruction, and assessment. His instructional decision making and flexible approach helped the instructor tailor the learning activities and teaching practices to the needs and interests of the students. The students generally appreciated and benefited from this approach, enjoyed the course, and provided positive remarks about the instructors’ practices. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2216197
- PAR ID:
- 10536412
- Editor(s):
- Grawe, Nathan D
- Publisher / Repository:
- National Numeracy Network via Digital Commons at the University of South Florida
- Date Published:
- Journal Name:
- Numeracy
- Volume:
- 17
- Issue:
- 1
- ISSN:
- 1936-4660
- Page Range / eLocation ID:
- Article 2
- Subject(s) / Keyword(s):
- instructional decision-making instructional autonomy gateway course quantitative reasoning instruction assessment
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Andrews, Tessa C. (Ed.)Limited access to undergraduate research experiences for science, technology, engineering, and mathematics students has led to creation of classroom-based opportunities for students to participate in authentic science. Revising laboratory courses to engage students in the practices of science has been shown to have many benefits for students. However, the instructor’s role in successful implementation of authentic-inquiry curricula requires further investigation. Previous work has demonstrated that navigating an instructional role within the open-ended format of an inquiry curriculum is challenging for instructors. Little is known about effective strategies for supporting students in authentic scientific practices. To address this challenge, we investigated instructors with prior experience teaching Authentic Inquiry through Modeling in Biology (AIM-Bio) in order to reveal strategies that are likely to help students succeed in this context. We took a unique approach that uncovered how instructors supported students and how they intended to support students in the scientific practices of modeling and experimental design. Analysis included in vivo recordings of instructor–student interactions paired with instructor interviews over the course of a semester. Findings detail the ways in which instructors flexibly responded to students through their in-the-moment actions. Additionally, the instructor intentions provided crucial explanatory power to explain the rationale behind teaching choices made.more » « less
- 
            Although quantitative reasoning (QR) is central to general education, many college students lack fundamental numeracy skills. In response, The City University of New York established a QR faculty development program that trained instructors across the disciplines through teaching exercises, guided discussions, hands-on activities, the development of instructional/assessment materials, and feedback from mentors and peers. Ten cohorts, 2010–2019, responded to surveys that evaluated their motives for participating and the extent to which they felt their goals were met. Faculty joined the program due to factors including their concern for students, their commitment to QR instruction, and their desire to build professional networks. Program completers reported a better understanding of QR, a greater commitment to QR instruction, increased awareness of tools and techniques (e.g., progressive pedagogies, active learning and constructivist approaches), a clearer sense of students’ needs, a commitment to assessment, and strong engagement with CUNY’s multidisciplinary, multi-institutional QR community. Overall, the perceived benefits of the program match participants’ motives for joining. Respondents’ comments suggest that faculty development for general education requires motivated participants, opportunities for networking, thoughtful discussion of readings and videos, modeling of best practices, a student-centered curriculum, sensitivity to participants’ backgrounds, adequate incentives, effective mentorship, and institutional commitment.more » « less
- 
            Symmetry is a foundational concept in inorganic chemistry, essential for understanding molecular properties and interactions. Yet, little is known about how instructors teach symmetry or what shapes their instructional and curricular choices. To investigate this, we analyzed classroom observations from fourteen inorganic chemistry instructors from various institutions, focusing on their use of student-centered practices and emphasis on symmetry content. We then conducted semi-structured interviews to explore the reasoning behind their decisions, using the Teacher-Centered Systemic Reform (TCSR) model to interpret influences from personal factors (e.g., teaching experience), teacher thinking (e.g., beliefs about teaching and learning), and contextual factors (e.g., classroom layout). Minute-by-minute analyses of teaching revealed four instructional profiles (student-centered, high-interactive, low-interactive, and instructor-centered) and four content profiles, ranging from an emphasis on symmetry fundamentals (e.g., symmetry elements and operations, point group assignment) to symmetry applications (e.g., spectroscopy, molecular orbitals, character tables). Three themes emerged: (1) instructional approaches and content emphasis vary substantially across instructors; (2) more student-centered instructors tend to focus on foundational symmetry concepts and skills, whereas more instructor-centered instructors tend to prioritize advanced applications; and (3) instructors’ beliefs and prior experiences, more than personal and contextual factors, drive instructional decisions for teaching symmetry.more » « less
- 
            A central goal of the Learning Assistant (LA) model is to improve students’ learning of science through the transformation of instructor practices. There is minimal existing research on the impact of college physics instructor experiences on their effectiveness. To investigate the association between college introductory physics instructors’ experiences with and without LAs and student learning, we drew on data from the Learning About STEM Student Outcomes (LASSO) database. The LASSO database provided us with student-level data (concept inventory scores and demographic data) for 4,365 students and course-level data (instructor experience and course features) for the students’ 93 mechanics courses. We performed Hierarchical Multiple Imputation to impute missing data and Hierarchical Linear Modeling to nest students within courses when modeling the associations be- tween instructor experience and student learning. Our models predict that instructors’ effectiveness decreases as they gain experience teaching without LAs. However, LA supported environments appear to remediate this decline in effectiveness as instructor effectiveness is maintained while they gain experience teaching with LAs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    