skip to main content


Title: Modeling Oyster Reef Restoration: Larval Supply and Reef Geometry Jointly Determine Population Resilience and Performance
Restoration of native oyster ( Crassostrea virginica ) populations in Chesapeake Bay shows great promise after three decades of failed attempts. Population models used to inform oyster restoration had integrated reef habitat quality, demonstrating that reef height determines oyster population persistence and resilience. Larval recruitment drives population dynamics of marine species, yet its impact with reef height and sediment deposition upon reef restoration is unknown. To assess the influence of reef height, sediment deposition and larval supply, we adapted a single-stage population model to incorporate stage structure using a system of four differential equations modeling change in juvenile density (J), and changes in volume of adults (A), oyster shell reef (R), and sediment (S) on an oyster reef. The JARS model was parameterized with empirical data from field experiments. Larval supply included larvae from the natal population and from outside populations. The stage-structured model possessed multiple non-negative equilibria (i.e., alternative stable states). Different initial conditions (e.g., oyster shell reef height) resulted in different final states. The main novel findings were that the critical reef height for population persistence and resilience was jointly dependent on sediment input and larval supply. A critical minimum larval supply was necessary for a reef to persist, even when initial sediment deposition was zero. As larval supply increased, the initial reef height needed for reef persistence was lowered, and oyster reef resilience was enhanced. A restoration oyster reef with higher larval influx could recover from more severe disturbances than a reef with lower larval influx. To prevent local extinction and assure a positive population state, higher levels of larval supply were required at greater sediment concentrations to overcome the negative effects of sediment accumulation on the reef. In addition, reef persistence was negatively related to sediment deposited on a reef prior to larval settlement and recruitment, implying that restoration reefs should be constructed immediately before settlement and recruitment to minimize sediment accumulation on a reef before settlement. These findings are valuable in oyster reef restoration because they can guide reef construction relative to larval supply and sediment deposition on a reef to yield effective and cost-efficient restoration strategies.  more » « less
Award ID(s):
1715651
NSF-PAR ID:
10333061
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Frontiers in Marine Science
Volume:
8
ISSN:
2296-7745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recruitment is a key demographic process for maintenance of local populations and recovery following disturbance. For marine invertebrates, distribution and abundances of recruits are impacted by spatiotemporal variation in larval supply, settlement rates and post-settlement survival. However, for colonial and modular organisms, differences in survival and growth between settlers and colonial recruits may also affect recruitment patterns. In the Caribbean, shifts in the benthic community structure favoring octocoral’s have been detected, and recruitment has been suggested as key for octocoral’s resilience. Hence, we studied octocoral recruitment dynamics, and evaluated the role of pre-settlement, settlement and post-settlement processes in recruit’s densities. We performed the study at two sites with different octocoral densities, on the south coast of St. John, United States Virgin Islands, and distinguished between processes occurring to recently settled polyps and to colonial recruits. At both sites, we monitored P. homomalla settlers on settlement tiles for 3 months, and colonial recruits of two of the most abundant genera ( Eunicea and Pseudoplexaura) for 3 years. In addition, we assessed whether recruits morphological traits affected recruitment and divided recruits of the genus Eunicea based on the presence of large calyces. The major contributor to both, single-polyps and colonial recruit densities was larval supply. Single-polyp densities were not limited by the availability of space, settlement cues, or early post-settlement survival. Height was the only predictor of survival and growth of colonial recruits, with potential growth rates increasing with height. However, large recruits suffered partial mortality often, distorting the relationship between recruit age and size, and causing most recruits to remain in the recruit size class (≤5 cm) longer than a year. Octocorals have been resilient to the conditions that have driven the decline of scleractinian corals throughout the Caribbean, and recruitment has been key to that success. Our results are crucial to understand early life history dynamics of Caribbean octocorals, and highlights the need to standardize the definition of recruit among colonial and modular taxa to facilitate inter-specific comparisons, and to understand future changes in coral reef community assemblages. 
    more » « less
  2. Abstract

    Metapopulation and source–sink dynamics are increasingly considered within spatially explicit management of wildlife populations, yet the application of these concepts has generally been limited to comparisons of the performance (e.g., demographic rates or dispersal) inside vs. outside protected areas, and at spatial scales that do not encompass an entire metapopulation. In the present study, a spatially explicit, size‐structured matrix model was applied to simulate the dynamics of an Eastern oyster (Crassostrea virginica) metapopulation in the second largest estuary in the United States—the Albemarle‐Pamlico Estuarine System in North Carolina. The model integrated larval dispersal simulations with empirical measures of oyster demographic rates to simulate the dynamics of the entire oyster metapopulation consisting of 646 reefs and five reef types: (1) restored subtidal reefs closed to harvest (i.e., sanctuaries or protected areas;n = 14), (2) restored subtidal reefs open to harvest (n = 53), (3) natural subtidal reefs open to harvest (n = 301), (4) natural intertidal reefs open to harvest (n = 129), and (5) oyster reefs on manmade, hard structures such as seawalls (n = 149). Key findings included (1) an overall stable, yet slightly declining oyster metapopulation, (2) variable reef type‐specific population trajectories, largely dependent on spatiotemporal variation in larval recruitment, (3) a greater relative importance of inter‐reef larval connectivity on metapopulation dynamics than local larval retention processes, and (4) spatiotemporal variation in the source–sink status of reef subpopulations wherein subtidal sanctuaries and reefs located in the northeastern portion of the estuary were frequent sources. From a management perspective, continued protection of oyster sanctuaries is warranted. Sanctuaries represented only 6.2% of the total reef area, however, they harbored 19% (± 2%) of all oysters and produced 25% (± 6%) of all larvae settling within the metapopulation. Additional management priorities should focus on restoration or conservation of subpopulations that serve as frequent source subpopulations (including those with poor demographic rates, but high connectivity potential), and management of harvest from sink subpopulations. The application of a source–sink framework and similar integrated modeling approach could inform management of oysters in other systems, as well as other species that exhibit similar metapopulation characteristics.

     
    more » « less
  3. Restoration of degraded estuarine oyster reefs typically involves deploying recycled oyster shell. In low‐salinity, low‐predation areas of estuaries, high‐volume shell deployments are known to improve flow conditions and thus oyster survival and growth. It is also hypothesized that the physical structure of restored reefs could suppress foraging by oyster predators in high‐salinity, high‐predation zones. That hypothesis is untested. Given limited resources, it is important to determine how much shell is needed for successful restoration and whether there are diminishing returns in shell addition. In Apalachicola Bay, Florida, we manipulated shell volume on an oyster reef to create three 0.4 ha areas of low (no shell addition), moderate (153 m3shell), and high (306 m3shell) habitat structure. We repeated experiments and surveys over 2 years to determine if restoration success increased with habitat structure. Predation on oysters was greater on the non‐shelled area than on the reshelled reefs, but similar between the two reshelled reefs. Oyster larval supply did not differ among the reef areas, but by the end of the experiment, oyster density (per unit area) increased quadratically with habitat structure, plateauing at high levels of structure. Model selection indicated that the most parsimonious explanation for these patterns was that increased habitat structure reduced predation and increased overall recruitment, but that the higher reshelling treatment did not have better outcomes than moderate reshelling. Thus, restoration could be optimized by deploying a moderate amount of shell per unit area.

     
    more » « less
  4. Abstract Thermal stress is expected to compromise the persistence of tropical corals throughout their biogeographic ranges, making many reefs inhospitable to corals by the end of the century. We integrated models of local predictions of thermal stress throughout the coming century, coral larval dispersal, and the persistence of a coral’s metapopulation(s) in the Caribbean to investigate broad trends in metapopulation fragmentation and decline. As coral reef patches become inhospitable throughout the next century, the metapopulation of Orbicella annularis is predicted to fragment, with sub-networks centered around highly connected patches and thermal refuges. Some of these are predicted to include the reefs of Colombia, Panama, Honduras, Guatemala, Belize, Southern and Northern Cuba, Haiti, and the Bahamas. Unknown coral population demographic parameters, such as lifetime egg production and stock-recruitment rates, limit the model’s predictions; however, a sensitivity analysis demonstrates that broadscale patterns of fragmentation and metapopulation collapse before the end of the century are consistent across a range of potential parameterizations. Despite dire predictions, the model highlights the potential value in protecting and restoring coral populations at strategic locations that are highly connected and/or influential to persistence. Coordinated conservation activities that support local resilience at low coral cover have the potential to stave off metapopulation collapse for decades, buying valuable time. Thermal refuges are linchpins of metapopulation persistence during moderate thermal stress, and targeted conservation or restoration that supports connectivity between these refuges by enhancing local population growth or sexual propagation may be critically important to species conservation on coral reefs. 
    more » « less
  5. Reversing coral reef decline requires reducing environmental threats while actively restoring reef ecological structure and function. A promising restoration approach uses coral breeding to boost natural recruitment and repopulate reefs with genetically diverse coral communities. Recent advances in predicting spawning, capturing spawn, culturing larvae, and rearing settlers have enabled the successful propagation, settlement, and outplanting of coral offspring in all of the world's major reef regions. Nevertheless, breeding efforts frequently yield low survival, reflecting the type III survivorship curve of corals and poor condition of most reefs targeted for restoration. Furthermore, coral breeding programs are still limited in spatial scale and species diversity. Here, we highlight four priority areas for research and cooperative innovation to increase the effectiveness and scale of coral breeding in restoration: (1) expanding the number of restoration sites and species, (2) improving broodstock selection to maximize the genetic diversity and adaptive capacity of restored populations, (3) enhancing culture conditions to improve offspring health before and after outplanting, and (4) scaling up infrastructure and technologies for large‐scale coral breeding and restoration. Prioritizing efforts in these four areas will enable practitioners to address reef decline at relevant ecological scales, re‐establish self‐sustaining coral populations, and ensure the long‐term success of restoration interventions. Overall, we aim to guide the coral restoration community toward actions and opportunities that can yield rapid technical advances in larval rearing and coral breeding, foster interdisciplinary collaborations, and ultimately achieve the ecological restoration of coral reefs.

     
    more » « less