skip to main content


Title: Diminishing returns in habitat restoration by adding biogenic materials: a test using estuarine oysters and recycled oyster shell

Restoration of degraded estuarine oyster reefs typically involves deploying recycled oyster shell. In low‐salinity, low‐predation areas of estuaries, high‐volume shell deployments are known to improve flow conditions and thus oyster survival and growth. It is also hypothesized that the physical structure of restored reefs could suppress foraging by oyster predators in high‐salinity, high‐predation zones. That hypothesis is untested. Given limited resources, it is important to determine how much shell is needed for successful restoration and whether there are diminishing returns in shell addition. In Apalachicola Bay, Florida, we manipulated shell volume on an oyster reef to create three 0.4 ha areas of low (no shell addition), moderate (153 m3shell), and high (306 m3shell) habitat structure. We repeated experiments and surveys over 2 years to determine if restoration success increased with habitat structure. Predation on oysters was greater on the non‐shelled area than on the reshelled reefs, but similar between the two reshelled reefs. Oyster larval supply did not differ among the reef areas, but by the end of the experiment, oyster density (per unit area) increased quadratically with habitat structure, plateauing at high levels of structure. Model selection indicated that the most parsimonious explanation for these patterns was that increased habitat structure reduced predation and increased overall recruitment, but that the higher reshelling treatment did not have better outcomes than moderate reshelling. Thus, restoration could be optimized by deploying a moderate amount of shell per unit area.

 
more » « less
Award ID(s):
1917029 1916870
NSF-PAR ID:
10372982
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Restoration Ecology
Volume:
28
Issue:
6
ISSN:
1061-2971
Page Range / eLocation ID:
p. 1633-1642
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background Abundance of the commercially and ecologically important Eastern oyster, Crassostrea virginica , has declined across the US Eastern and Gulf coasts in recent decades, spurring substantial efforts to restore oyster reefs. These efforts are widely constrained by the availability, cost, and suitability of substrates to support oyster settlement and reef establishment. In particular, oyster shell is often the preferred substrate but is relatively scarce and increasingly expensive. Thus, there is a need for alternative oyster restoration materials that are cost-effective, abundant, and durable. Methods We tested the viability of two low-cost substrates—concrete and recycled blue crab ( Callinectes sapidus ) traps—in facilitating oyster recovery in a replicated 22-month field experiment at historically productive but now degraded intertidal oyster grounds on northwestern Florida’s Nature Coast. Throughout the trial, we monitored areal oyster cover on each substrate; at the end of the trial, we measured the densities of oysters by size class (spat, juvenile, and market-size) and the biomass and volume of each reef. Results Oysters colonized the concrete structures more quickly than the crab traps, as evidenced by significantly higher oyster cover during the first year of the experiment. By the end of the experiment, the concrete structures hosted higher densities of spat and juveniles, while the density of market-size oysters was relatively low and similar between treatments. The open structure of the crab traps led to the development of larger-volume reefs, while oyster biomass per unit area was similar between treatments. In addition, substrates positioned at lower elevations (relative to mean sea level) supported higher oyster abundance, size, and biomass than those less frequently inundated at higher elevations. Discussion Together, these findings indicate that both concrete and crab traps are viable substrates for oyster reef restoration, especially when placed at lower intertidal elevations conducive to oyster settlement and reef development. 
    more » « less
  2. Restoration of native oyster ( Crassostrea virginica ) populations in Chesapeake Bay shows great promise after three decades of failed attempts. Population models used to inform oyster restoration had integrated reef habitat quality, demonstrating that reef height determines oyster population persistence and resilience. Larval recruitment drives population dynamics of marine species, yet its impact with reef height and sediment deposition upon reef restoration is unknown. To assess the influence of reef height, sediment deposition and larval supply, we adapted a single-stage population model to incorporate stage structure using a system of four differential equations modeling change in juvenile density (J), and changes in volume of adults (A), oyster shell reef (R), and sediment (S) on an oyster reef. The JARS model was parameterized with empirical data from field experiments. Larval supply included larvae from the natal population and from outside populations. The stage-structured model possessed multiple non-negative equilibria (i.e., alternative stable states). Different initial conditions (e.g., oyster shell reef height) resulted in different final states. The main novel findings were that the critical reef height for population persistence and resilience was jointly dependent on sediment input and larval supply. A critical minimum larval supply was necessary for a reef to persist, even when initial sediment deposition was zero. As larval supply increased, the initial reef height needed for reef persistence was lowered, and oyster reef resilience was enhanced. A restoration oyster reef with higher larval influx could recover from more severe disturbances than a reef with lower larval influx. To prevent local extinction and assure a positive population state, higher levels of larval supply were required at greater sediment concentrations to overcome the negative effects of sediment accumulation on the reef. In addition, reef persistence was negatively related to sediment deposited on a reef prior to larval settlement and recruitment, implying that restoration reefs should be constructed immediately before settlement and recruitment to minimize sediment accumulation on a reef before settlement. These findings are valuable in oyster reef restoration because they can guide reef construction relative to larval supply and sediment deposition on a reef to yield effective and cost-efficient restoration strategies. 
    more » « less
  3. Abstract

    The capacity of an apex predator to produce nonconsumptive effects (NCEs) in multiple prey trophic levels can create considerable complexity in nonconsumptive cascading interactions, but these effects are poorly studied. We examined such effects in a model food web where the apex predator (blue crabs) releases chemical cues in urine that affect both the intermediate consumer (mud crabs seek shelter) and the basal prey (oysters are induced to grow stronger shells). Shelter availability and predator presence were manipulated in a laboratory experiment to identify patterns in species interactions. Then, experimentally induced and uninduced oysters were planted across high‐quality and low‐quality habitats with varying levels of shelter availability and habitat heterogeneity to determine the consistency of these patterns in the field. Oyster shell thickening in response to blue crab chemical cues generally protected oysters from mud crab predation in both the laboratory and in field environments that differed in predation intensity, structural complexity, habitat heterogeneity, and predator composition. However, NCEs on the intermediate predator (greater use of refugia) opposed the NCEs on oyster prey in the interior of oyster reefs while still providing survival advantages to basal prey on reef edges and bare substrates. Thus, the combined effects of changing movement patterns of intermediate predators and morphological defenses of basal prey create complex, but predictable, patterns of NCEs across landscapes and ecotones that vary in structural complexity. Generalist predators that feed on multiple trophic levels are ubiquitous, and their potential effects on NCEs propagating simultaneously to different trophic levels must be quantified to understand the role of NCEs in food webs.

     
    more » « less
  4. Oysters are described as estuarine ecosystem engineers because their reef structures provide habitat for a variety of flora and fauna, alter hydrodynamics, and affect sediment composition. To what spatial extent oyster reefs influence surrounding infauna and sediment composition remains uncertain. We sampled sediment and infauna across 8 intertidal mudflats at distances up to 100 m from oyster reefs within coastal bays of Virginia, USA, to determine if distance from reefs and physical site characteristics (reef elevation, local hydrodynamics, and oyster cover) explain the spatial distributions of infauna and sediment. Total infauna density increased with distance away from reefs; however, the opposite was observed for predatory crustaceans (primarily crabs). Our results indicate a halo surrounding the reefs of approximately 40 m (using an increase in ~25% of observance as the halo criterion). At 90 m from reefs, bivalves and gastropods were 70% more likely to be found (probability of observance), while there was an approximate 4-fold decrease for large crustaceans compared to locations adjacent to reefs. Increases in percent oyster reef cover and/or mean reef area did not statistically alter infauna densities but showed a statistical correlation with smaller sediment grain size, increased organic matter, and reduced flow rates. Weaker flow conditions within the surrounding mudflats were also associated with smaller grain sizes and higher organic matter content, suggesting multiple drivers on the spatial distribution of sediment composition. This study emphasizes the complexity of bio-physical couplings and the considerable spatial extent over which oyster reefs engineer intertidal communities. 
    more » « less
  5. Abstract

    Mesopredator release following top predator loss may reduce biodiversity and harm foundation species. We investigated the potential for moderate environmental changes to trigger mesopredator release by disrupting the foraging ability of top predators without affecting their abundance by performing an in situ experiment designed to isolate the magnitude of mesopredator effects on oyster reefs (Crassostrea virginica). In estuaries, fishes occupy upper trophic levels. Most are visual foragers and become less effective predators in high turbidity. Communities were 10% more diverse, fish predation was 20% higher, and oyster recruitment four times higher in low turbidity. Crab mesopredators were 10% larger and 260% more abundant in high turbidity. Caging treatments to exclude mesopredators significantly affected communities in high but not low turbidity. Oysters had 150% stronger shells in turbid areas, a known response to crabs that was indicative of higher crab abundance. These findings indicated that increased turbidity attenuated fish foraging ability without disrupting the foraging ability of mesopredators (e.g., crabs) that forage by chemoreception. Larger and more numerous crab mesopredators significantly affected oyster reef community structure as well as the survival and growth of oysters in turbid environments. In environments where apex predators and mesopredators utilize different sensory mechanisms, sensory‐mediated mesopredator release may occur when conditions affect the foraging ability of higher order predators but not their prey.

     
    more » « less