skip to main content


Title: Direct sampling methods for isotropic and anisotropic scatterers with point source measurements

In this paper, we consider the inverse scattering problem for recovering either an isotropic or anisotropic scatterer from the measured scattered field initiated by a point source. We propose two new imaging functionals for solving the inverse problem. The first one employs a 'far-field' transform to the data which we then use to derive and provide an explicit decay rate for the imaging functional. In order to analyze the behavior of this imaging functional we use the factorization of the near field operator as well as the Funk-Hecke integral identity. For the second imaging functional the Cauchy data is used to define the functional and its behavior is analyzed using the Green's identities. Numerical experiments are given in two dimensions for both isotropic and anisotropic scatterers.

 
more » « less
Award ID(s):
2107891 1812693
NSF-PAR ID:
10333091
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Inverse Problems and Imaging
Volume:
0
Issue:
0
ISSN:
1930-8337
Page Range / eLocation ID:
0
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The concept of topological derivative has proved effective as a qualitative inversion tool for a wave-based identification of finite-sized objects. Although for the most part, this approach remains based on a heuristic interpretation of the topological derivative, a first attempt toward its mathematical justification was done in Bellis et al (2013 Inverse Problems 29 075012) for the case of isotropic media with far field data and inhomogeneous refraction index. Our paper extends the analysis there to the case of anisotropic scatterers and background with near field data. Topological derivative-based imaging functional is analyzed using a suitable factorization of the near fields, which became achievable thanks to a new volume integral formulation recently obtained in Bonnet (2017 J. Integral Equ. Appl. 29 271–95). Our results include justification of sign heuristics for the topological derivative in the isotropic case with jump in the main operator and for some cases of anisotropic media, as well as verifying its decaying property in the isotropic case with near field spherical measurements configuration situated far enough from the probing region. 
    more » « less
  2. null (Ed.)
    Abstract This paper is concerned with the inverse scattering problem for the three-dimensional Maxwell equations in bi-anisotropic periodic structures.The inverse scattering problem aims to determine the shape of bi-anisotropic periodic scatterers from electromagnetic near-field data at a fixed frequency.The factorization method is studied as an analytical and numerical tool for solving the inverse problem.We provide a rigorous justification of the factorization method which results in the unique determination and a fast imaging algorithm for the periodic scatterer.Numerical examples for imaging three-dimensional periodic structures are presented to examine the efficiency of the method. 
    more » « less
  3. Abstract

    In this paper, we consider the inverse scattering problem associated with an anisotropic medium with a conductive boundary. We will assume that the corresponding far–field pattern is known/measured and we consider two inverse problems. First, we show that the far–field data uniquely determines the boundary coefficient. Next, since it is known that anisotropic coefficients are not uniquely determined by this data we will develop a qualitative method to recover the scatterer. To this end, we study the so–called monotonicity method applied to this inverse shape problem. This method has recently been applied to some inverse scattering problems but this is the first time it has been applied to an anisotropic scatterer. This method allows one to recover the scatterer by considering the eigenvalues of an operator associated with the far–field operator. We present some simple numerical reconstructions to illustrate our theory in two dimensions. For our reconstructions, we need to compute the adjoint of the Herglotz wave function as an operator mapping intoH1of a small ball.

     
    more » « less
  4. In this paper, we consider the inverse problem of recovering a sound soft scatterer from the measured scattered field. The scattered field is assumed to be induced by a point source on a curve/surface that is known. Here, we propose and analyze new direct sampling methods for this problem. The first method we consider uses a far-field transformation of the near-field data, which allows us to derive explicit bounds in the resolution analysis for the direct sampling method’s imaging functional. Two direct sampling methods are studied, using the far-field transformation. For these imaging functionals, we use the Funk–Hecke identities to study the resolution analysis. We also study a direct sampling method for the case of the given Cauchy data. Numerical examples are given to show the applicability of the new imaging functionals for recovering a sound soft scatterer with full and partial aperture data. 
    more » « less
  5. Optical diffraction tomography (ODT) is an indispensable tool for studying objects in three dimensions. Until now, ODT has been limited to coherent light because spatial phase information is required to solve the inverse scattering problem. We introduce a method that enables ODT to be applied to imaging incoherent contrast mechanisms such as fluorescent emission. Our strategy mimics the coherent scattering process with two spatially coherent illumination beams. The interferometric illumination pattern encodes spatial phase in temporal variations of the fluorescent emission, thereby allowing incoherent fluorescent emission to mimic the behavior of coherent illumination. The temporal variations permit recovery of the spatial distribution of fluorescent emission with an inverse scattering model. Simulations and experiments demonstrate isotropic resolution in the 3D reconstruction of a fluorescent object.

     
    more » « less