skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On fast reconstruction of periodic structures with partial scattering data
This paper presents a numerical method for solving the inverse problem of reconstructing the shape of periodic structures from scattering data. This inverse problem is motivated by applications in the nondestructive evaluation of photonic crystals. The numerical method belongs to the class of sampling methods that aim to construct an imaging function for the shape of the periodic structure using scattering data. By extending the results of Nguyen, Stahl, and Truong [Inverse Problems, 39:065013, 2023], we studied a simple imaging function that uses half the data required by the numerical method in the cited paper. Additionally, this imaging function is fast, simple to implement, and very robust against noise in the data. Both isotropic and anisotropic cases were investigated, and numerical examples were presented to demonstrate the performance of the numerical method.  more » « less
Award ID(s):
2243854
PAR ID:
10574366
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
AIMS Press
Date Published:
Journal Name:
Electronic Research Archive
Volume:
32
Issue:
11
ISSN:
2688-1594
Page Range / eLocation ID:
6481 to 6502
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract This paper is concerned with the inverse scattering problem for the three-dimensional Maxwell equations in bi-anisotropic periodic structures.The inverse scattering problem aims to determine the shape of bi-anisotropic periodic scatterers from electromagnetic near-field data at a fixed frequency.The factorization method is studied as an analytical and numerical tool for solving the inverse problem.We provide a rigorous justification of the factorization method which results in the unique determination and a fast imaging algorithm for the periodic scatterer.Numerical examples for imaging three-dimensional periodic structures are presented to examine the efficiency of the method. 
    more » « less
  2. Abstract This paper is concerned with the inverse problem of determining the shape of penetrable periodic scatterers from scattered field data. We propose a sampling method with a novel indicator function for solving this inverse problem. This indicator function is very simple to implement and robust against noise in the data. The resolution and stability analysis of the indicator function is analyzed. Our numerical study shows that the proposed sampling method is more stable than the factorization method and more efficient than the direct or orthogonality sampling method in reconstructing periodic scatterers. 
    more » « less
  3. Nguyen, Dinh-Liem; Nguyen, Loc; Nguyen, Thi-Phong (Ed.)
    This paper is concerned with the numerical solution to the direct and inverse electromagnetic scattering problem for bi-anisotropic periodic structures. The direct problem can be reformulated as an integro-di erential equation. We study the existence and uniqueness of solution to the latter equation and analyze a spectral Galerkin method to solve it. This spectral method is based on a periodization technique which allows us to avoid the evaluation of the quasiperiodic Green's tensor and to use the fast Fourier transform in the numerical implementation of the method. For the inverse problem, we study the orthogonality sampling method to reconstruct the periodic structures from scattering data generated by only two incident fields. The sampling method is fast, simple to implement, regularization free, and very robust against noise in the data. Numerical examples for both direct and inverse problems are presented to examine the efficiency of the numerical solvers. 
    more » « less
  4. Abstract In this paper, we consider the inverse scattering problem associated with an anisotropic medium with a conductive boundary. We will assume that the corresponding far–field pattern is known/measured and we consider two inverse problems. First, we show that the far–field data uniquely determines the boundary coefficient. Next, since it is known that anisotropic coefficients are not uniquely determined by this data we will develop a qualitative method to recover the scatterer. To this end, we study the so–called monotonicity method applied to this inverse shape problem. This method has recently been applied to some inverse scattering problems but this is the first time it has been applied to an anisotropic scatterer. This method allows one to recover the scatterer by considering the eigenvalues of an operator associated with the far–field operator. We present some simple numerical reconstructions to illustrate our theory in two dimensions. For our reconstructions, we need to compute the adjoint of the Herglotz wave function as an operator mapping intoH1of a small ball. 
    more » « less
  5. Abstract This paper concerns the inverse shape problem of recovering an unknown clamped cavity embedded in a thin infinite plate. The model problem is assumed to be governed by the two-dimensional biharmonic wave equation in the frequency domain. Based on the far-field data, a resolution analysis is conducted for cavity recovery via the direct sampling method. The Funk–Hecke integral identity is employed to analyze the performance of two imaging functions. Our analysis demonstrates that the same imaging functions commonly used for acoustic inverse shape problems are applicable to the biharmonic wave context. This work presents the first extension of direct sampling methods to biharmonic waves using far-field data. Numerical examples are provided to illustrate the effectiveness of these imaging functions in recovering a clamped cavity. 
    more » « less