skip to main content

Title: Early Paleocene floras from the San Juan Basin (New Mexico, USA) record terrestrial ecosystem change following the Cretaceous-Paleogene Boundary
Early Paleocene floral communities were substantially restructured as a result of the Cretaceous-Paleogene (K-Pg) mass extinction approximately 66.0 Ma. While events immediately adjacent to the K-Pg boundary have been extensively studied, comparatively little research has looked at long-term terrestrial ecosystem recovery during the early Paleocene. The San Juan Basin (SJB), located in northwestern New Mexico, preserves an exceptional, large, and well-dated early Paleocene plant record making it an ideal location to study long-term recovery of early Paleocene terrestrial ecosystems. Here we investigate early Paleocene terrestrial ecosystem change using a coupled high-resolution plant and δ13C record from the SJB. Plant macrofossils were collected from the lower Paleocene Ojo Alamo Sandstone and lower Nacimiento Formation in the SJB spanning the initial ~1.5 myr of the Paleocene. Macrofloral extinction, origination, and net diversification rates were simultaneously estimated using the Pradel capture-mark-recapture (CMR) model from 66.0 – 64.5 Ma with 100 Kyr time-steps. Two intervals of decreasing floral diversity were identified: a short interval at ~65.5 Ma and a prolonged interval from ~65.2 – 64.7 Ma. Two short intervals of rapidly increasing floral diversity were also identified: the first at ~65.3 Ma and the second at ~64.6 Ma. The onset of both intervals of decreasing floral diversity are coeval with a -1.5 to -2.5 ‰ bulk organic δ13C excursion. We also applied the Pradel CMR model to contemporaneous macrofloras from the Denver Basin (DB), Colorado and the Williston Basin (WB), North Dakota and Montana. The floral diversity patterns estimated from the DB and WB indicate intervals of increasing and decreasing floral diversity that are coeval with the same intervals identified in the SJB. This suggests a regional driver in patterns of floral diversity change during the early Paleocene in western North America, which reflects prolonged terrestrial ecosystem instability following the K-Pg mass extinction.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Geological Society of America Abstracts with Programs
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The Cretaceous–Paleogene (K/Pg) extinction appears to have been geographically heterogeneous for some organismal groups. Southern Hemisphere K/Pg palynological records have shown lower extinction and faster recovery than in the Northern Hemisphere, but no comparable, well-constrained Southern Hemisphere macrofloras spanning this interval had been available. Here, macrofloral turnover patterns are addressed for the first time in the Southern Hemisphere, using more than 3500 dicot leaves from the latest Cretaceous (Maastrichtian) and the earliest Paleocene (Danian) of Argentine Patagonia. A maximum ca. 90% macrofloral extinction and ca. 45% drop in rarefied species richness is estimated across the K/Pg, consistent with substantial species-level extinction and previously observed extirpation of host-specialized leaf mines. However, prior palynological and taxonomic studies indicate low turnover of higher taxa and persistence of general floral composition in the same sections. High species extinction, decreased species richness, and homogeneous Danian macrofloras across time and facies resemble patterns often observed in North America, but there are several notable differences. When compared with boundary-spanning macrofloras at similar absolute paleolatitudes (ca. 50°S or 50°N) from the Williston Basin (WB) in the Dakotas, both Maastrichtian and Danian Patagonian species richnesses are higher, extending a history of elevated South American diversity into the Maastrichtian. Despite high species turnover, our analyses also reveal continuity and expansion of leaf morphospace, including an increase in lobed and toothed species unlike the Danian WB. Thus, both Patagonian and WB K/Pg macrofloras support a significant extinction event, but they may also reflect geographically heterogeneous diversity, extinction, and recovery patterns warranting future study. 
    more » « less
  2. The collapse of late Permian (Lopingian) Gondwanan floras, characterized by the extinction of glossopterid gymnosperms, heralded the end of one of the most enduring and extensive biomes in Earth’s history. The Sydney Basin, Australia, hosts a near-continuous, age-constrained succession of high southern paleolatitude (∼65−75°S) terrestrial strata spanning the end-Permian extinction (EPE) interval. Sedimentological, stable carbon isotopic, palynological, and macrofloral data were collected from two cored coal-exploration wells and correlated. Six palynostratigraphic zones, supported by ordination analyses, were identified within the uppermost Permian to Lower Triassic succession, corresponding to discrete vegetation stages before, during, and after the EPE interval. Collapse of the glossopterid biome marked the onset of the terrestrial EPE and may have significantly predated the marine mass extinctions and conodont-defined Permian−Triassic Boundary. Apart from extinction of the dominant Permian plant taxa, the EPE was characterized by a reduction in primary productivity, and the immediate aftermath was marked by high abundances of opportunistic fungi, algae, and ferns. This transition is coeval with the onset of a gradual global decrease in δ13Corg and the primary extrusive phase of Siberian Traps Large Igneous Province magmatism. The dominant gymnosperm groups of the Gondwanan Mesozoic (peltasperms, conifers, and corystosperms) all appeared soon after the collapse but remained rare throughout the immediate post-EPE succession. Faltering recovery was due to a succession of rapid and severe climatic stressors until at least the late Early Triassic. Immediately prior to the Smithian−Spathian boundary (ca. 249 Ma), indices of increased weathering, thick redbeds, and abundant pleuromeian lycophytes likely signify marked climate change and intensification of the Gondwanan monsoon climate system. This is the first record of the Smithian−Spathian floral overturn event in high southern latitudes. 
    more » « less
  3. An explanation for why some species, such as non-avian dinosaurs, became extinct, whereas others, including mammals, survived the Cretaceous/Paleogene (K/Pg) mass extinction, 66 million years ago (Ma) is still debated. What were the mechanisms behind community restructuring and the emergence of new ecological opportunities after the K/Pg event, selectively driving extinction and survivorship patterns? Using Markov networks, ecological niche partitioning and Earth System models, we reconstructed disruptions in continental food web dynamics, simulating long-term trajectories in ecospace occupancy through the latest Cretaceous (83.6–66.0 Ma) and early Paleogene (66.0–61.6 Ma). This method uses partial correlation networks to represent how different trophic groups interact in a food web and builds on empirical spatial co-variations to explore dependencies between trophic groups. Our analyses are based on a spatiotemporally and taxonomically standardized dataset, comprising more than 1,600 fossil occurrences representing more than 470 genera of fish, salamanders, frogs, albanerpetontids, lizards, snakes, champsosaurs, turtles, crocodylians, dinosaurs (including birds), and mammals across the best sampled region for this interval, the Western Interior of North America. We explicitly tested whether: 1) shifts in food web architecture underwent major restructuring before and after the K/Pg transition, including whether some trophic guilds were more prone to these shifts than others; and 2) any of these changes were associated with fluctuations in the realized niche space, helping to explain survivorship and extinction patterns at the boundary. We find a shift in latest Cretaceous dinosaur faunas, as medium-sized species counterbalanced a loss of large herbivores, but that dinosaur niches were otherwise resilient and static until the K/Pg boundary. Smaller terrestrial vertebrates, including mammals, followed a consistent trajectory of increasing trophic impact and relaxation of ecological niche limits that began in the Cretaceous and continued after the extinction. Patterns of mammalian ecological radiation and niche restructuring indicate that these taxa did not simply proliferate after the extinction; rather, their earlier ecological diversification might have helped them survive the K/Pg event, whereas the static niche of dinosaurs might have contributed to their demise. 
    more » « less
  4. Mammals rose to prominence in terrestrial ecosystems after the Cretaceous–Paleogene mass extinction, but the mammalian lineages characteristic of Paleogene faunas began their evolutionary and ecological diversification in the Late Cretaceous, stimulated by the rise of angiosperms (flowering plants) according to the preeminent hy- pothesis. The Cretaceous rise of mammals is part of a larger expansion in biodiversity on land that has been termed the Cretaceous (or Angiosperm) Terrestrial Revolution, but the mechanisms underlying its initiation remain opaque. Here, we review data from the fossil and rock records of western North America—due to its relatively continuous fossil record and complete chronology of mountain-building events—to explore the role that tectonism might have played in catalyzing the rise of modern-aspect terrestrial biodiversity, especially that of mammals and angiosperms. We highlight that accelerated increases in mammal and angiosperm species richness in the Late Cretaceous, ca. 100–75 Ma, track the acceleration of tectonic processes that formed the North American Cordillera and occurred during the ‘middle-Cretaceous greenhouse’ climate. This rapid increase in both mammal and angiosperm diversity also occurred during the zenith of Western Interior Seaway trans- gression, a period when the availability of lowland habitats was at its minimum, and oscillatory transgression- regression cycles would have frequently forced upland range shifts among lowland populations. These changes to both landscapes and climates have all been linked to an abrupt, global tectonic-plate ‘reorganization’ that occurred ca. 100 Ma. That mammals and angiosperms both increased in species richness during this interval does not appear to be a taphonomic artifact—some of the largest spikes in diversity occur when the available mammal-bearing fossil localities are sparse. Noting that mountainous regions are engines for generating biodi- versity, especially in warm climates, we propose that the Cretaceous/Angiosperm Terrestrial Revolution was ultimately catalyzed by accelerated tectonism and enhanced via cascading changes to landscapes and climate. In the fossil record of individual basins across western North America, we predict that (1) increases in mammalian diversity through the Late Cretaceous should be positively correlated with rates of tectonic uplift, which we infer to be a proxy for topographic relief, and are attended by increased climate heterogeneity, (2) the diversity of mountain-proximal mammalian assemblages should exceed that of coeval mountain-distal assemblages, espe- cially in the latest Cretaceous, and (3) endemism should increase from the latest Cretaceous to early Paleogene as Laramide mountain belts fragmented the Western Interior. Empirical tests of these predictions will require increased fossil collecting in under-sampled regions and time intervals, description and systematic study of existing collections, and basin-scale integration of geological and paleontological data. Testing these predictions will further our understanding of the coevolutionary processes linking tectonics, climate, and life throughout Earth history. 
    more » « less
  5. The Whitehorse Group and Quartermaster Formation are extensive red-bed terrestrial sequences representing the final episode of sedimentation in the Palo Duro Basin in north-central Texas, U.S.A. Regionally, these strata record the culmination of a long-term regression sequence beginning in the middle to late Permian. The Whitehorse Group includes beds of abundant laminated to massive red quartz siltstone to fine sandstone and rare dolomite, laminated to massive gypsum, and claystones, as well as diagenetic gypsum. The Quartermaster Formation exhibits a change from nearly equal amounts of thin planar and lenticular fine sandstone and laminated to massive mudstone in its lower half to overlying strata with coarser-grained, cross-bedded sandstones indicative of meandering channels up to 7 m deep and rare overbank mudstones. Paleosols are absent in the Upper Whitehorse Group and only poorly developed in the Quartermaster Formation. Volcanic ash-fall deposits (tuffs) present in uppermost Whitehorse Group and lower Quartermaster Formation strata permit correlation among five stratigraphic sections distributed over ∼150 km and provide geochronologic age information for these rocks. Both the Whitehorse Group and Quartermaster Formation have traditionally been assigned to the late Permian Ochoan (Changhsingian) stage, and workers assumed that the Permian-Triassic boundary is characterized by a regionally significant unconformity. Chemostratigraphic or biostratigraphic evidence for this age assignment, however, have been lacking to date. Single zircon U-Pb CA-TIMS analyses from at least two distinct volcanic ash fall layers in the lower Quartermaster Formation, which were identified and collected from five different localities across the Palo Duro Basin, yield interpreted depositional ages ranging from 252.19 ± 0.30 to 251.74 ± 0.28 Ma. Single zircon U-Pb CA-TIMS analyses of detrital zircons from sandstones located only a few meters beneath the top of the Quartermaster Formation yield a range of dates from Mesoproterozoic (1418 Ma) to Middle Triassic (244.5 Ma; Anisian), the latter of which is interpreted as a maximum depositional age, which is no older than Anisian, thus indicating the Permian-Triassic boundary to lie somewhere within the lower Quartermaster Formation/upper Whitehorse Group succession. Stable carbon isotope data from 180 samples of early-burial dolomicrite cements preserve a chemostratigraphic signal that is similar among sections, with a large ∼−8‰ negative isotope excursion ∼20 m beneath the Whitehorse Group-Quartermaster Formation boundary. This large negative carbon isotope excursion is interpreted to be the same excursion associated with the end-Permian extinction and this is in concert with the new high precision radioisotopic age data presented and the fact that the excursion lies within a normal polarity stratigraphic magnetozone. Dolomite cement δ 13 C values remain less negative (between about −5 and −8 permil) into the lower part of the Quartermaster Formation before becoming more positive toward the top of the section. This long interval of negative δ 13 C values in the Quartermaster Formation is interpreted to represent the earliest Triassic (Induan) inception of biotic and ecosystem “recovery.” Oxygen isotope values of dolomicrite cements show a progressive trend toward more positive values through the boundary interval, suggesting substantially warmer conditions around the end-Permian extinction event and a trend toward cooler conditions after the earliest Triassic. Our observations on these strata show that the paleoenvironment and paleoclimate across the Permian-Triassic boundary in western, sub-equatorial Pangea was characterized by depositional systems that were not conducive to plant preservation. 
    more » « less