skip to main content


Title: Cretaceous–Paleogene plant extinction and recovery in Patagonia
Abstract The Cretaceous–Paleogene (K/Pg) extinction appears to have been geographically heterogeneous for some organismal groups. Southern Hemisphere K/Pg palynological records have shown lower extinction and faster recovery than in the Northern Hemisphere, but no comparable, well-constrained Southern Hemisphere macrofloras spanning this interval had been available. Here, macrofloral turnover patterns are addressed for the first time in the Southern Hemisphere, using more than 3500 dicot leaves from the latest Cretaceous (Maastrichtian) and the earliest Paleocene (Danian) of Argentine Patagonia. A maximum ca. 90% macrofloral extinction and ca. 45% drop in rarefied species richness is estimated across the K/Pg, consistent with substantial species-level extinction and previously observed extirpation of host-specialized leaf mines. However, prior palynological and taxonomic studies indicate low turnover of higher taxa and persistence of general floral composition in the same sections. High species extinction, decreased species richness, and homogeneous Danian macrofloras across time and facies resemble patterns often observed in North America, but there are several notable differences. When compared with boundary-spanning macrofloras at similar absolute paleolatitudes (ca. 50°S or 50°N) from the Williston Basin (WB) in the Dakotas, both Maastrichtian and Danian Patagonian species richnesses are higher, extending a history of elevated South American diversity into the Maastrichtian. Despite high species turnover, our analyses also reveal continuity and expansion of leaf morphospace, including an increase in lobed and toothed species unlike the Danian WB. Thus, both Patagonian and WB K/Pg macrofloras support a significant extinction event, but they may also reflect geographically heterogeneous diversity, extinction, and recovery patterns warranting future study.  more » « less
Award ID(s):
1925552 1925755
NSF-PAR ID:
10227143
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Paleobiology
Volume:
46
Issue:
4
ISSN:
0094-8373
Page Range / eLocation ID:
445 to 469
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Early Paleocene floral communities were substantially restructured as a result of the Cretaceous-Paleogene (K-Pg) mass extinction approximately 66.0 Ma. While events immediately adjacent to the K-Pg boundary have been extensively studied, comparatively little research has looked at long-term terrestrial ecosystem recovery during the early Paleocene. The San Juan Basin (SJB), located in northwestern New Mexico, preserves an exceptional, large, and well-dated early Paleocene plant record making it an ideal location to study long-term recovery of early Paleocene terrestrial ecosystems. Here we investigate early Paleocene terrestrial ecosystem change using a coupled high-resolution plant and δ13C record from the SJB. Plant macrofossils were collected from the lower Paleocene Ojo Alamo Sandstone and lower Nacimiento Formation in the SJB spanning the initial ~1.5 myr of the Paleocene. Macrofloral extinction, origination, and net diversification rates were simultaneously estimated using the Pradel capture-mark-recapture (CMR) model from 66.0 – 64.5 Ma with 100 Kyr time-steps. Two intervals of decreasing floral diversity were identified: a short interval at ~65.5 Ma and a prolonged interval from ~65.2 – 64.7 Ma. Two short intervals of rapidly increasing floral diversity were also identified: the first at ~65.3 Ma and the second at ~64.6 Ma. The onset of both intervals of decreasing floral diversity are coeval with a -1.5 to -2.5 ‰ bulk organic δ13C excursion. We also applied the Pradel CMR model to contemporaneous macrofloras from the Denver Basin (DB), Colorado and the Williston Basin (WB), North Dakota and Montana. The floral diversity patterns estimated from the DB and WB indicate intervals of increasing and decreasing floral diversity that are coeval with the same intervals identified in the SJB. This suggests a regional driver in patterns of floral diversity change during the early Paleocene in western North America, which reflects prolonged terrestrial ecosystem instability following the K-Pg mass extinction. 
    more » « less
  2. Mass extinction at the Cretaceous–Paleogene (K-Pg) boundary coin- cides with the Chicxulub bolide impact and also falls within the broader time frame of Deccan trap emplacement. Critically, though, empirical evidence as to how either of these factors could have driven observed extinction patterns and carbon cycle perturbations is still lacking. Here, using boron isotopes in foraminifera, we docu- ment a geologically rapid surface-ocean pH drop following the Chicxulub impact, supporting impact-induced ocean acidification as a mechanism for ecological collapse in the marine realm. Subsequently, surface water pH rebounded sharply with the extinction of marine calcifiers and the associated imbalance in the global carbon cycle. Our reconstructed water-column pH gradients, combined with Earth sys- tem modeling, indicate that a partial ∼50% reduction in global ma- rine primary productivity is sufficient to explain observed marine carbon isotope patterns at the K-Pg, due to the underlying action of the solubility pump. While primary productivity recovered within a few tens of thousands of years, inefficiency in carbon export to the deep sea lasted much longer. This phased recovery scenario recon- ciles competing hypotheses previously put forward to explain the K-Pg carbon isotope records, and explains both spatially variable patterns of change in marine productivity across the event and a lack of extinction at the deep sea floor. In sum, we provide insights into the drivers of the last mass extinction, the recovery of marine carbon cycling in a postextinction world, and the way in which ma- rine life imprints its isotopic signal onto the geological record. 
    more » « less
  3. Previous ichnological analysis at the Chicxulub impact crater, Yucatán Peninsula, México (International Ocean Discovery Program [IODP]/International Continental Scientific Drilling Program [ICDP] Site M0077), showed a surprisingly rapid initial tracemaker community recovery after the end-Cretaceous (Cretaceous-Paleogene [K-Pg]) mass extinction event. Here, we found that full recovery was also rapid, with the establishment of a well-developed tiered community within ~700 k.y. Several stages of recovery were observed, with distinct phases of stabilization and diversification, ending in the development of a trace fossil assemblage mainly consisting of abundant Zoophycos, Chondrites, and Planolites, assigned to the Zoophycos ichnofacies. The increase in diversity is associated with higher abundance, larger forms, and a deeper and more complex tiering structure. Such rapid recovery suggests that favorable paleoenvironmental conditions were quickly reestablished within the impact basin, enabling colonization of the substrate. Comparison with the end-Permian extinction reveals similarities during recovery, yet postextinction recovery was significantly faster after the K-Pg event. The rapid recovery has significant implications for the evolution of macrobenthic biota after the K-Pg event. Our results have relevance in understanding how communities recovered after the K-Pg impact and how this event differed from other mass extinction events. 
    more » « less
  4. In spite of their indispensable role in host nutrition, the anaerobic gut fungal (AGF) component of the herbivorous gut microbiome remains poorly characterized. To examine global patterns and determinants of AGF diversity, we generated and analyzed an amplicon dataset from 661 fecal samples from 34 animal species, 9 families, and 6 continents. We identified 56 novel genera, greatly expanding AGF diversity beyond current estimates. Both stochastic (homogenizing dispersal and drift) and deterministic (homogenizing selection) processes played an integral role in shaping AGF communities, with a higher level of stochasticity observed in foregut fermenters. Community structure analysis revealed a distinct pattern of phylosymbiosis, where host-associated (animal species, family, and gut type), rather than ecological (domestication status and biogeography) factors predominantly shaped the community. Hindgut fermenters exhibited stronger and more specific fungal-host associations, compared to broader mostly non-host specific associations in foregut fermenters. Transcriptomics-enabled phylogenomic and molecular clock analyses of 52 strains from 14 genera indicated that most genera with preferences for hindgut hosts evolved earlier (44-58 Mya), while those with preferences for foregut hosts evolved more recently (22-32 Mya). This pattern is in agreement with the sole dependence of herbivores on hindgut fermentation past the Cretaceous-Paleogene (K-Pg) extinction event through the Paleocene and Eocene, and the later rapid evolution of animals employing foregut fermentation strategy during the early Miocene. Only a few AGF genera deviated from this pattern of co-evolutionary phylosymbiosis, by exhibiting preferences suggestive of post-evolutionary environmental filtering. Our results greatly expand the documented scope of AGF diversity and provide an ecologically and evolutionary-grounded model to explain the observed patterns of AGF diversity in extant animal hosts. 
    more » « less
  5. Abstract

    The Cretaceous–Paleogene (K–Pg) mass extinction 66 million years ago was characterized by a worldwide ecological catastrophe and rapid species turnover. Large‐scale devastation of forested environments resulting from the Chicxulub asteroid impact likely influenced the evolutionary trajectories of multiple clades in terrestrial environments, and it has been hypothesized to have biased survivorship in favour of nonarboreal lineages across the K–Pg boundary. Here, we evaluate patterns of substrate preferences across the K–Pg boundary among crown group mammals, a group that underwent rapid diversification following the mass extinction. Using Bayesian, likelihood, and parsimony reconstructions, we identify patterns of mammalian ecological selectivity that are broadly similar to those previously hypothesized for birds. Models based on extant taxa indicate predominant K–Pg survivorship among semi‐ or nonarboreal taxa, followed by numerous independent transitions to arboreality in the early Cenozoic. However, contrary to the predominant signal, some or all members of total‐clade Euarchonta (Primates + Dermoptera + Scandentia) appear to have maintained arboreal habits across the K–Pg boundary, suggesting ecological flexibility during an interval of global habitat instability. We further observe a pronounced shift in character state transitions away from plesiomorphic arboreality associated with the K–Pg transition. Our findings are consistent with the hypothesis that predominantly nonarboreal taxa preferentially survived the end‐Cretaceous mass extinction, and emphasize the pivotal influence of the K‐Pg transition in shaping the early evolutionary trajectories of extant terrestrial vertebrates.

     
    more » « less