- Award ID(s):
- 1739676
- Publication Date:
- NSF-PAR ID:
- 10333141
- Journal Name:
- Environmental Research Letters
- Volume:
- 16
- Issue:
- 9
- Page Range or eLocation-ID:
- 093002
- ISSN:
- 1748-9326
- Sponsoring Org:
- National Science Foundation
More Like this
-
Greenhouses conserve land and water while increasing crop production, making them an attractive system for low environmental impact agriculture. Yet, to achieve this goal, there is a need to reduce their large energy demand. Employing semitransparent organic solar cells (OSCs) on greenhouse structures provide an opportunity to offset the greenhouse energy needs while maintaining the lighting needs of the plants. However, the design trade-off involved in optimizing solar power generation and crop productivity to maximize greenhouse economic value is yet to be studied in detail. Here, a functional plant growth model is integrated with a dynamic energy model that includes supplemental lighting to optimize the economics of growing lettuce and tomato. The greenhouse optimization considers 64 different OSC active layers with varying roof coverage for 25 distinct climates providing a global perspective. We find that crop yield is the primary economic driver, and that crop yield can be maintained in OSC-greenhouses across diverse climates. The crop productivity along with the energy produced by the OSCs results in improved net present value of the OSC-greenhouses relative to conventional systems in most climates for both lettuce and tomato. In addition, we find common solar cell active layers that maximize greenhouse economic valuemore »
-
Abstract Notwithstanding popular perception, the environmental impacts of organic agriculture, particularly with respect to pesticide use, are not well established. Fueling the impasse is the general lack of data on comparable organic and conventional agricultural fields. We identify the location of ~9,000 organic fields from 2013 to 2019 using field-level crop and pesticide use data, along with state certification data, for Kern County, CA, one of the US’ most valuable crop producing counties. We parse apart how being organic relative to conventional affects decisions to spray pesticides and, if spraying, how much to spray using both raw and yield gap-adjusted pesticide application rates, based on a global meta-analysis. We show the expected probability of spraying any pesticides is reduced by about 30 percentage points for organic relative to conventional fields, across different metrics of pesticide use including overall weight applied and coarse ecotoxicity metrics. We report little difference, on average, in pesticide use for organic and conventional fields that do spray, though observe substantial crop-specific heterogeneity.
-
Throughout history, urban agriculture practitioners have adapted to various challenges by continuing to provide food and social benefits. Urban gardens and farms have also responded to sudden political, economic, ecological, and social crises: wartime food shortages; urban disinvestment and property abandonment; earthquakes and floods; climate-change induced weather events; and global economic disruptions. This paper examines the effects on, and responses by, urban farms and gardens to the COVID-19 pandemic. The paper is based on data collected in the summer of 2020 at the onset of the pandemic when cities were struggling with appropriate responses to curb its spread. It builds on an international research project (FEW-meter) that developed a methodology to measure material and social benefits of urban agriculture (UA) in five countries (France, Germany, Poland, UK and USA) over two growing seasons, from a Food-Energy-Water nexus perspective. We surveyed project partners to ascertain the effects of COVID-19 on those gardens and farms and we interviewed policy stakeholders in each country to investigate the wider impacts of the pandemic on UA. We report the results with respect to five key areas: (1) garden accessibility and service provision during the pandemic; (2) adjustments to operational arrangements; (3) effects on production; (4)more »
-
Obeid, Iyad Selesnick (Ed.)Electroencephalography (EEG) is a popular clinical monitoring tool used for diagnosing brain-related disorders such as epilepsy [1]. As monitoring EEGs in a critical-care setting is an expensive and tedious task, there is a great interest in developing real-time EEG monitoring tools to improve patient care quality and efficiency [2]. However, clinicians require automatic seizure detection tools that provide decisions with at least 75% sensitivity and less than 1 false alarm (FA) per 24 hours [3]. Some commercial tools recently claim to reach such performance levels, including the Olympic Brainz Monitor [4] and Persyst 14 [5]. In this abstract, we describe our efforts to transform a high-performance offline seizure detection system [3] into a low latency real-time or online seizure detection system. An overview of the system is shown in Figure 1. The main difference between an online versus offline system is that an online system should always be causal and has minimum latency which is often defined by domain experts. The offline system, shown in Figure 2, uses two phases of deep learning models with postprocessing [3]. The channel-based long short term memory (LSTM) model (Phase 1 or P1) processes linear frequency cepstral coefficients (LFCC) [6] features from each EEGmore »
-
The recent decade has witnessed an increase in irrigated acreage in the southeast United States due to the shift in cropping patterns, climatic conditions, and water availability. Peanut, a major legume crop cultivated in Georgia, Southeast United States, has been a staple food in the American household. Regardless of its significant contribution to the global production of peanuts (fourth largest), studies related to local or regional scale water consumption in peanut production and its significant environmental impacts are scarce. Therefore, the present research contributes to the water footprint of peanut crops in eight counties of Georgia and its potential ecological impacts. The impact categories relative to water consumption (water depletion—green and blue water scarcity) and pesticide use (water degradation—potential freshwater ecotoxicity) using crop-specific characterization factors are estimated for the period 2007 to 2017 at the mid-point level. These impacts are transformed into damages to the area of protection in terms of ecosystem quality at the end-point level. This is the first county-wise quantification of the water footprint and its impact assessment using ISO 14046 framework in the southeast United States. The results suggest inter-county differences in water consumption of crops with higher blue water requirements than green and grey water.more »