skip to main content


Title: Environmental and economic impacts of solar‐powered integrated greenhouses
Abstract

Greenhouse vegetable production plays a vital role in providing year‐round fresh vegetables to global markets, achieving higher yields, and using less water than open‐field systems, but at the expense of increased energy demand. This study examines the life cycle environmental and economic impacts of integrating semitransparent organic photovoltaics (OPVs) into greenhouse designs. We employ life cycle assessment to analyze six environmental impacts associated with producing greenhouse‐grown tomatoes in a Solar PoweRed INtegrated Greenhouse (SPRING) compared to conventional greenhouses with and without an adjacent solar photovoltaic array, across three distinct locations. The SPRING design produces significant reductions in environmental impacts, particularly in regions with high solar insolation and electricity‐intensive energy demands. For example, in Arizona, global warming potential values for a conventional, adjacent PV and SPRING greenhouse are found to be 3.71, 2.38, and 2.36 kg CO2eq/kg tomato, respectively. Compared to a conventional greenhouse, the SPRING design may increase life cycle environmental burdens in colder regions because the shading effect of OPV increases heating demands. Our analysis shows that SPRING designs must maintain crop yields at levels similar to conventional greenhouses in order to be economically competitive. Assuming consistent crop yields, uncertainty analysis shows average net present cost of production across Arizona to be $3.43, $3.38, and $3.64 per kg of tomato for the conventional, adjacent PV and SPRING system, respectively.

 
more » « less
Award ID(s):
1639429
NSF-PAR ID:
10458904
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Industrial Ecology
Volume:
24
Issue:
1
ISSN:
1088-1980
Page Range / eLocation ID:
p. 234-247
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Greenhouses conserve land and water while increasing crop production, making them an attractive system for low environmental impact agriculture. Yet, to achieve this goal, there is a need to reduce their large energy demand. Employing semitransparent organic solar cells (OSCs) on greenhouse structures provide an opportunity to offset the greenhouse energy needs while maintaining the lighting needs of the plants. However, the design trade-off involved in optimizing solar power generation and crop productivity to maximize greenhouse economic value is yet to be studied in detail. Here, a functional plant growth model is integrated with a dynamic energy model that includes supplemental lighting to optimize the economics of growing lettuce and tomato. The greenhouse optimization considers 64 different OSC active layers with varying roof coverage for 25 distinct climates providing a global perspective. We find that crop yield is the primary economic driver, and that crop yield can be maintained in OSC-greenhouses across diverse climates. The crop productivity along with the energy produced by the OSCs results in improved net present value of the OSC-greenhouses relative to conventional systems in most climates for both lettuce and tomato. In addition, we find common solar cell active layers that maximize greenhouse economic value resulting in guidelines for scaling up OSC-greenhouse design. Through this model framework, we highlight the opportunity for OSCs in greenhouses, uncover designs and locations that provide the most value, and provide a basis for further development of OSC-greenhouses to achieve a sustainable means of food production. 
    more » « less
  2. Recognizing the growing interest in the application of organic photovoltaics (OPVs) with greenhouse crop production systems, in this study we used flexible, roll-to-roll printed, semitransparent OPV arrays as a roof shade for a greenhouse hydroponic tomato production system during a spring and summer production season in the arid southwestern U.S. The wavelength-selective OPV arrays were installed in a contiguous area on a section of the greenhouse roof, decreasing the transmittance of all solar radiation wavelengths and photosynthetically active radiation (PAR) wavelengths (400–700 nm) to the OPV-shaded area by approximately 40% and 37%, respectively. Microclimate conditions and tomato crop growth and yield parameters were measured in both the OPV-shaded (‘OPV’) and non-OPV-shaded (‘Control’) sections of the greenhouse. The OPV shade stabilized the canopy temperature during midday periods with the highest solar radiation intensities, performing the function of a conventional shading method. Although delayed fruit development and ripening in the OPV section resulted in lower total yields compared to the Control section (24.6 kg m−2 and 27.7 kg m−2, respectively), after the fourth (of 10 total) harvests, the average weekly yield, fruit number, and fruit mass were not significantly different between the treatment (OPV-shaded) and control group. Light use efficiency (LUE), defined as the ratio of total fruit yield to accumulated PAR received by the plant canopy, was nearly twice as high as the Control section, with 21.4 g of fruit per mole of PAR for plants in the OPV-covered section compared to 10.1 g in the Control section. Overall, this study demonstrated that the use of semi-transparent OPVs as a seasonal shade element for greenhouse production in a high-light region is feasible. However, a higher transmission of PAR and greater OPV device efficiency and durability could make OPV shades more economically viable, providing a desirable solution for co-located greenhouse crop production and renewable energy generation in hot and high-light intensity regions. 
    more » « less
  3. Abstract

    An array of emerging technologies, from electric vehicles to renewable energy systems, relies on large‐format lithium ion batteries (LIBs). LIBs are a critical enabler of clean energy technologies commonly associated with air pollution and greenhouse gas mitigation strategies. However, LIBs require lithium, and expanding the supply of lithium requires new lithium production capacity, which, in turn, changes the environmental impacts associated with lithium production since different resource types and ore qualities will be exploited. A question of interest is whether this will lead to significant changes in the environmental impacts of primary lithium over time. Part one of this two‐part article series describes the development of a novel resource production model that predicts future lithium demand and production characteristics (e.g., timing, location, and ore type). In this article, part two, the forecast is coupled with anticipatory life‐cycle assessment (LCA) modeling to estimate the environmental impacts of producing battery‐grade lithium carbonate equivalent (LCE) each year between 2018 and 2100.

    The result is a normalized life‐cycle impact intensity for LCE that reflects the changing resource type, quantity, and region of production. Sustained growth in lithium demands through 2100 necessitates extraction of lower grade resources and mineral deposits, especially after 2050. Despite the reliance on lower grade resources and differences in impact intensity for LCE production from each deposit, the LCA results show only small to modest increases in impact, for example, carbon intensity increases from 3.2 kg CO2e/kg LCE in 2020 to 3.3 kg CO2e/kg LCE in 2100.

     
    more » « less
  4. Abstract

    The study compared the life cycle environmental impacts of three coastal flood management strategies: grey infrastructure (levee), green–grey infrastructure (levee and oyster reef), and a do-nothing scenario, considering the flood damage of a single flooding event in the absence of protection infrastructure. A case study was adopted from a New Orleans, Louisiana residential area to facilitate the comparison. Hazus software, design guidelines, reports, existing projects, and literature were utilized as foreground data for modelling materials. A process-based life cycle assessment was used to assess environmental impacts. The life cycle environmental impacts included global warming, ozone depletion, acidification, eutrophication, smog formation, resource depletion, ecotoxicity, and various human health effects. The ecoinvent database was used for the selected life cycle unit processes. The mean results show green–grey infrastructure as the most promising strategy across most impact categories, reducing 47% of the greenhouse gas (GHG) emissions compared to the do-nothing strategy. Compared to grey infrastructure, green–grey infrastructure mitigates 13%–15% of the environmental impacts while providing equivalent flood protection. A flooding event with a 100-year recurrence interval in the study area is estimated at 34 million kg of CO2equivalent per kilometre of shoreline, while grey and green–grey infrastructure mitigating such flooding is estimated to be 21 and 18 million kg, respectively. This study reinforced that coastal flooding environmental impacts are primarily caused by rebuilding damaged houses, especially concrete and structural timber replacement, accounting for 90% of GHG emissions, with only 10% associated with flood debris waste treatment. The asphalt cover of the levee was identified as the primary contributor to environmental impacts in grey infrastructure, accounting for over 75% of GHG emissions during construction. We found that there is an important interplay between grey and green infrastructure and optimizing their designs can offer solutions to sustainable coastal flood protection.

     
    more » « less
  5. Agricultural management practices improve crop yields to satisfy food demand of the growing population. However, these activities can have negative consequences, including the release of greenhouse gas (GHG) emissions that contribute to global climate change. To mitigate this global environmental problem, the management practices that contribute the most to system GHG emissions should be identified and targeted to mitigate emissions. Accordingly, we estimated the cradle-to-product GHG emissions of irrigated corn production under various farmer-selected scenarios at an experimental testing field in the semi-arid U.S. Great Plains. We applied a carbon footprint approach to quantify life cycle GHG emissions associated with pre-field (e.g., energy production, fertilizer production) and in-field (e.g., groundwater pumping, fertilizer application) activities within fourteen scenarios in the 2020 Oklahoma Testing Ag Performance Solutions (TAPS) sprinkler corn competition. We determined that 63% of the total GHG emission from corn production was associated with in- field activities and that agricultural soil emissions were the overall driving factor. Soil biochemical processes within agricultural soils were expected to contribute an average of 89 ± 18 g CO2-eq kg− 1 corn of the total 271 ± 46 g CO2-eq kg− 1 corn estimated from these systems. On-site natural gas combustion for agricultural groundwater pumping, pre-field fertilizer production, and pre-field energy production for groundwater pumping were the next most influential parameters on total GHG emissions. Diesel fuel, seed, and herbicide production had insignificant contributions to total GHG emissions from corn production. The model was most sensitive to the modeled GHG emissions from agricultural soil, which had significant uncertainty in the emission factor. Therefore, future efforts should target field measurements to better predict the contribution of direct soil emissions to total GHG emissions, particularly under different managements. In addition, identifying the optimal application rate of irrigation water and fertilizer will help to decrease GHG emissions from groundwater irrigated crops. 
    more » « less