When training overparameterized deep networks for classification tasks, it has been widely observed that the learned features exhibit a so-called “neural collapse” phenomenon. More specifically, for the output features of the penultimate layer, for each class the within-class features converge to their means, and the means of different classes exhibit a certain tight frame structure, which is also aligned with the last layer’s classifier. As feature normalization in the last layer becomes a common practice in modern representation learning, in this work we theoretically justify the neural collapse phenomenon under normalized features. Based on an un-constrained feature model, we simplify the empirical loss function in a multi-class classification task into a nonconvex optimization problem over the Riemannian manifold by constraining all features and classifiers over the sphere. In this context, we analyze the nonconvex landscape of the Riemannian optimization problem over the product of spheres, showing a benign global landscape in the sense that the only global minimizers are the neural collapse solutions while all other critical points are strict saddle points with negative curvature. Experimental results on practical deep networks corroborate our theory and demonstrate that better representations can be learned faster via feature normalization. Code for our experiments can be found at https://github.com/cjyaras/normalized-neural-collapse.
more »
« less
A Diffusion Approximation Theory of Momentum Stochastic Gradient Descent in Nonconvex Optimization
Momentum stochastic gradient descent (MSGD) algorithm has been widely applied to many nonconvex optimization problems in machine learning (e.g., training deep neural networks, variational Bayesian inference, etc.). Despite its empirical success, there is still a lack of theoretical understanding of convergence properties of MSGD. To fill this gap, we propose to analyze the algorithmic behavior of MSGD by diffusion approximations for nonconvex optimization problems with strict saddle points and isolated local optima. Our study shows that the momentum helps escape from saddle points but hurts the convergence within the neighborhood of optima (if without the step size annealing or momentum annealing). Our theoretical discovery partially corroborates the empirical success of MSGD in training deep neural networks.
more »
« less
- PAR ID:
- 10333178
- Date Published:
- Journal Name:
- Stochastic Systems
- Volume:
- 11
- Issue:
- 4
- ISSN:
- 1946-5238
- Page Range / eLocation ID:
- 265 to 281
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Despite the established convergence theory of Optimistic Gradient Descent Ascent (OGDA) and Extragradient (EG) methods for the convex-concave minimax problems, little is known about the theoretical guarantees of these methods in nonconvex settings. To bridge this gap, for the first time, this paper establishes the convergence of OGDA and EG methods under the nonconvex-strongly-concave (NC-SC) and nonconvex-concave (NC-C) settings by providing a unified analysis through the lens of single-call extra-gradient methods. We further establish lower bounds on the convergence of GDA/OGDA/EG, shedding light on the tightness of our analysis. We also conduct experiments supporting our theoretical results. We believe our results will advance the theoretical understanding of OGDA and EG methods for solving complicated nonconvex minimax real-world problems, e.g., Generative Adversarial Networks (GANs) or robust neural networks training.more » « less
-
Stochastic gradient Hamiltonian Monte Carlo (SGHMC) is a variant of stochastic gradients with momentum where a controlled and properly scaled Gaussian noise is added to the stochastic gradients to steer the iterates toward a global minimum. Many works report its empirical success in practice for solving stochastic nonconvex optimization problems; in particular, it has been observed to outperform overdamped Langevin Monte Carlo–based methods, such as stochastic gradient Langevin dynamics (SGLD), in many applications. Although the asymptotic global convergence properties of SGHMC are well known, its finite-time performance is not well understood. In this work, we study two variants of SGHMC based on two alternative discretizations of the underdamped Langevin diffusion. We provide finite-time performance bounds for the global convergence of both SGHMC variants for solving stochastic nonconvex optimization problems with explicit constants. Our results lead to nonasymptotic guarantees for both population and empirical risk minimization problems. For a fixed target accuracy level on a class of nonconvex problems, we obtain complexity bounds for SGHMC that can be tighter than those available for SGLD.more » « less
-
Bilevel optimization is one of the fundamental problems in machine learning and optimization. Recent theoretical developments in bilevel optimization focus on finding the firstorder stationary points for nonconvex-strongly-convex cases. In this paper, we analyze algorithms that can escape saddle points in nonconvex-strongly-convex bilevel optimization. Specifically, we show that the perturbed approximate implicit differentiation (AID) with a warm start strategy finds an -approximate local minimum of bilevel optimization in ̃O(−2) iterations with high probability. Moreover, we propose an inexact NEgativecurvature-Originated-from-Noise Algorithm (iNEON), an algorithm that can escape saddle point and find local minimum of stochastic bilevel optimization. As a by-product, we provide the first nonasymptotic analysis of perturbed multi-step gradient descent ascent (GDmax) algorithm that converges to local minimax point for minimax problems.more » « less
-
Bilevel optimization is one of the fundamental problems in machine learning and optimization. Recent theoretical developments in bilevel optimization focus on finding the first-order stationary points for nonconvex-strongly-convex cases. In this paper, we analyze algorithms that can escape saddle points in nonconvex-strongly-convex bilevel optimization. Specifically, we show that the perturbed approximate implicit differentiation (AID) with a warm start strategy finds an ϵ-approximate local minimum of bilevel optimization in $$\tilde O(\epsilon^{-2})$$ iterations with high probability. Moreover, we propose an inexact NEgative-curvature-Originated-from-Noise Algorithm (iNEON), an algorithm that can escape saddle point and find local minimum of stochastic bilevel optimization. As a by-product, we provide the first nonasymptotic analysis of perturbed multi-step gradient descent ascent (GDmax) algorithm that converges to local minimax point for minimax problems.more » « less
An official website of the United States government

