skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: A Diffusion Approximation Theory of Momentum Stochastic Gradient Descent in Nonconvex Optimization
Momentum stochastic gradient descent (MSGD) algorithm has been widely applied to many nonconvex optimization problems in machine learning (e.g., training deep neural networks, variational Bayesian inference, etc.). Despite its empirical success, there is still a lack of theoretical understanding of convergence properties of MSGD. To fill this gap, we propose to analyze the algorithmic behavior of MSGD by diffusion approximations for nonconvex optimization problems with strict saddle points and isolated local optima. Our study shows that the momentum helps escape from saddle points but hurts the convergence within the neighborhood of optima (if without the step size annealing or momentum annealing). Our theoretical discovery partially corroborates the empirical success of MSGD in training deep neural networks.  more » « less
Award ID(s):
1453934 2053489
PAR ID:
10333178
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Stochastic Systems
Volume:
11
Issue:
4
ISSN:
1946-5238
Page Range / eLocation ID:
265 to 281
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. When training overparameterized deep networks for classification tasks, it has been widely observed that the learned features exhibit a so-called “neural collapse” phenomenon. More specifically, for the output features of the penultimate layer, for each class the within-class features converge to their means, and the means of different classes exhibit a certain tight frame structure, which is also aligned with the last layer’s classifier. As feature normalization in the last layer becomes a common practice in modern representation learning, in this work we theoretically justify the neural collapse phenomenon under normalized features. Based on an un-constrained feature model, we simplify the empirical loss function in a multi-class classification task into a nonconvex optimization problem over the Riemannian manifold by constraining all features and classifiers over the sphere. In this context, we analyze the nonconvex landscape of the Riemannian optimization problem over the product of spheres, showing a benign global landscape in the sense that the only global minimizers are the neural collapse solutions while all other critical points are strict saddle points with negative curvature. Experimental results on practical deep networks corroborate our theory and demonstrate that better representations can be learned faster via feature normalization. Code for our experiments can be found at https://github.com/cjyaras/normalized-neural-collapse. 
    more » « less
  2. Stochastic gradient Hamiltonian Monte Carlo (SGHMC) is a variant of stochastic gradients with momentum where a controlled and properly scaled Gaussian noise is added to the stochastic gradients to steer the iterates toward a global minimum. Many works report its empirical success in practice for solving stochastic nonconvex optimization problems; in particular, it has been observed to outperform overdamped Langevin Monte Carlo–based methods, such as stochastic gradient Langevin dynamics (SGLD), in many applications. Although the asymptotic global convergence properties of SGHMC are well known, its finite-time performance is not well understood. In this work, we study two variants of SGHMC based on two alternative discretizations of the underdamped Langevin diffusion. We provide finite-time performance bounds for the global convergence of both SGHMC variants for solving stochastic nonconvex optimization problems with explicit constants. Our results lead to nonasymptotic guarantees for both population and empirical risk minimization problems. For a fixed target accuracy level on a class of nonconvex problems, we obtain complexity bounds for SGHMC that can be tighter than those available for SGLD. 
    more » « less
  3. Despite the established convergence theory of Optimistic Gradient Descent Ascent (OGDA) and Extragradient (EG) methods for the convex-concave minimax problems, little is known about the theoretical guarantees of these methods in nonconvex settings. To bridge this gap, for the first time, this paper establishes the convergence of OGDA and EG methods under the nonconvex-strongly-concave (NC-SC) and nonconvex-concave (NC-C) settings by providing a unified analysis through the lens of single-call extra-gradient methods. We further establish lower bounds on the convergence of GDA/OGDA/EG, shedding light on the tightness of our analysis. We also conduct experiments supporting our theoretical results. We believe our results will advance the theoretical understanding of OGDA and EG methods for solving complicated nonconvex minimax real-world problems, e.g., Generative Adversarial Networks (GANs) or robust neural networks training. 
    more » « less
  4. We develop an analytical framework to characterize the set of optimal ReLU neural networks by reformulating the non-convex training problem as a convex program. We show that the global optima of the convex parameterization are given by a polyhedral set and then extend this characterization to the optimal set of the nonconvex training objective. Since all stationary points of the ReLU training problem can be represented as optima of sub-sampled convex programs, our work provides a general expression for all critical points of the non-convex objective. We then leverage our results to provide an optimal pruning algorithm for computing minimal networks, establish conditions for the regularization path of ReLU networks to be continuous, and develop sensitivity results for minimal ReLU networks. 
    more » « less
  5. This work examines the deep disconnect between existing theoretical analyses of gradient-based algorithms and the practice of training deep neural networks. Specifically, we provide numerical evidence that in large-scale neural network training (e.g., ImageNet + ResNet101, and WT103 + TransformerXL models), the neural network’s weights do not converge to stationary points where the gradient of the loss is zero. Remarkably, however, we observe that even though the weights do not converge to stationary points, the progress in minimizing the loss function halts and training loss stabilizes. Inspired by this observation, we propose a new perspective based on ergodic theory of dynamical systems to explain it. Rather than studying the evolution of weights, we study the evolution of the distribution of weights. We prove convergence of the distribution of weights to an approximate invariant measure, thereby explaining how the training loss can stabilize without weights necessarily converging to stationary points. We further discuss how this perspective can better align optimization theory with empirical observations in machine learning practice. 
    more » « less