Automatic video analysis tools are an indispensable component in imaging applications. Object detection, the first and the most important step for automatic video analysis, is implemented in many embedded cameras. The accuracy of object detection relies on the quality of images that are processed. This paper proposes a new image quality model for predicting the performance of object detection on embedded cameras. A video data set is constructed that considers different factors for quality degradation in the imaging process, such as reduced resolution, noise, and blur. The performances of commonly used low-complexity object detection algorithms are obtained for the data set. A no-reference regression model based on a bagging ensemble of regression trees is built to predict the accuracy of object detection using observable features in an image. Experimental results show that the proposed model provides more accurate predictions of image quality for object detection than commonly known image quality measures.
more »
« less
C3VFC: A Method for Tracing and Quantification of Microglia in 3D Temporal Images
Automatic glia reconstruction is essential for the dynamic analysis of microglia motility and morphology, notably so in research on neurodegenerative diseases. In this paper, we propose an automatic 3D tracing algorithm called C3VFC that uses vector field convolution to find the critical points along the centerline of an object and trace paths that traverse back to the soma of every cell in an image. The solution provides detection and labeling of multiple cells in an image over time, leading to multi-object reconstruction. The reconstruction results can be used to extract bioinformatics from temporal data in different settings. The C3VFC reconstruction results found up to a 53% improvement on the next best performing state-of-the-art tracing method. C3VFC achieved the highest accuracy scores, in relation to the baseline results, in four of the five different measures: Entire structure average, the average bi-directional entire structure average, the different structure average, and the percentage of different structures.
more »
« less
- Award ID(s):
- 1759802
- PAR ID:
- 10333235
- Date Published:
- Journal Name:
- Applied Sciences
- Volume:
- 11
- Issue:
- 13
- ISSN:
- 2076-3417
- Page Range / eLocation ID:
- 6078
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper proposes an automatic parameter selection framework for optimizing the performance of parameter-dependent regularized reconstruction algorithms. The proposed approach exploits a convolutional neural network for direct estimation of the regularization parameters from the acquired imaging data. This method can provide very reliable parameter estimates in a computationally efficient way. The effectiveness of the proposed approach is verified on transform-learning-based magnetic resonance image reconstructions of two different publicly available datasets. This experiment qualitatively and quantitatively measures improvement in image reconstruction quality using the proposed parameter selection strategy versus both existing parameter selection solutions and a fully deep-learning reconstruction with limited training data. Based on the experimental results, the proposed method improves average reconstructed image peak signal-to-noise ratio by a dB or more versus all competing methods in both brain and knee datasets, over a range of subsampling factors and input noise levels.more » « less
-
Abstract Recent advances in brain clearing and imaging have made it possible to image entire mammalian brains at sub-micron resolution. These images offer the potential to assemble brain-wide atlases of neuron morphology, but manual neuron reconstruction remains a bottleneck. Several automatic reconstruction algorithms exist, but most focus on single neuron images. In this paper, we present a probabilistic reconstruction method, ViterBrain, which combines a hidden Markov state process that encodes neuron geometry with a random field appearance model of neuron fluorescence. ViterBrain utilizes dynamic programming to compute the global maximizer of what we call the most probable neuron path. We applied our algorithm to imperfect image segmentations, and showed that it can follow axons in the presence of noise or nearby neurons. We also provide an interactive framework where users can trace neurons by fixing start and endpoints. ViterBrain is available in our open-source Python package .more » « less
-
The unsupervised anomaly detection problem holds great importance but remains challenging to address due to the myriad of data possibilities in our daily lives. Currently, distinct models are trained for different scenarios. In this work, we introduce a reconstruction-based anomaly detection structure built on the Latent Space Denoising Diffusion Probabilistic Model (LDM). This structure effectively detects anomalies in multi-class situations. When normal data comprises multiple object categories, existing reconstruction models often learn identical patterns. This leads to the successful reconstruction of both normal and anomalous data based on these patterns, resulting in the inability to distinguish anomalous data. To address this limitation, we implemented the LDM model. Its process of adding noise effectively disrupts identical patterns. Additionally, this advanced image generation model can generate images that deviate from the input. We have further proposed a classification model that compares the input with the reconstruction results, tapping into the generative power of the LDM model. Our structure has been tested on the MNIST and CIFAR-10 datasets, where it surpassed the performance of state-of-the-art reconstruction-based anomaly detection models.more » « less
-
This paper addresses the single-image compressive sensing (CS) and reconstruction problem. We propose a scalable Laplacian pyramid reconstructive adversarial network (LAPRAN) that enables high-fidelity, flexible and fast CS images reconstruction. LAPRAN progressively reconstructs an image following the concept of the Laplacian pyramid through multiple stages of reconstructive adversarial networks (RANs). At each pyramid level, CS measurements are fused with a contextual latent vector to generate a high-frequency image residual. Consequently, LAPRAN can produce hierarchies of reconstructed images and each with an incremental resolution and improved quality. The scalable pyramid structure of LAPRAN enables high-fidelity CS reconstruction with a flexible resolution that is adaptive to a wide range of compression ratios (CRs), which is infeasible with existing methods. Experimental results on multiple public datasets show that LAPRAN offers an average 7.47dB and 5.98dB PSNR, and an average 57.93% and 33.20% SSIM improvement compared to model-based and data-driven baselines, respectively.more » « less