skip to main content


Title: Fast Automatic Parameter Selection for MRI Reconstruction
This paper proposes an automatic parameter selection framework for optimizing the performance of parameter-dependent regularized reconstruction algorithms. The proposed approach exploits a convolutional neural network for direct estimation of the regularization parameters from the acquired imaging data. This method can provide very reliable parameter estimates in a computationally efficient way. The effectiveness of the proposed approach is verified on transform-learning-based magnetic resonance image reconstructions of two different publicly available datasets. This experiment qualitatively and quantitatively measures improvement in image reconstruction quality using the proposed parameter selection strategy versus both existing parameter selection solutions and a fully deep-learning reconstruction with limited training data. Based on the experimental results, the proposed method improves average reconstructed image peak signal-to-noise ratio by a dB or more versus all competing methods in both brain and knee datasets, over a range of subsampling factors and input noise levels.  more » « less
Award ID(s):
1759802
NSF-PAR ID:
10147832
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI)
Page Range / eLocation ID:
1078 to 1081
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Purpose

    Parallel imaging and compressed sensing reconstructions of large MRI datasets often have a prohibitive computational cost that bottlenecks clinical deployment, especially for three‐dimensional (3D) non‐Cartesian acquisitions. One common approach is to reduce the number of coil channels actively used during reconstruction as in coil compression. While effective for Cartesian imaging, coil compression inherently loses signal energy, producing shading artifacts that compromise image quality for 3D non‐Cartesian imaging. We propose coil sketching, a general and versatile method for computationally‐efficient iterative MR image reconstruction.

    Theory and Methods

    We based our method on randomized sketching algorithms, a type of large‐scale optimization algorithms well established in the fields of machine learning and big data analysis. We adapt the sketching theory to the MRI reconstruction problem via a structured sketching matrix that, similar to coil compression, considers high‐energy virtual coils obtained from principal component analysis. But, unlike coil compression, it also considers random linear combinations of the remaining low‐energy coils, effectively leveraging information from all coils.

    Results

    First, we performed ablation experiments to validate the sketching matrix design on both Cartesian and non‐Cartesian datasets. The resulting design yielded both improved computatioanal efficiency and preserved signal‐to‐noise ratio (SNR) as measured by the inverse g‐factor. Then, we verified the efficacy of our approach on high‐dimensional non‐Cartesian 3D cones datasets, where coil sketching yielded up to three‐fold faster reconstructions with equivalent image quality.

    Conclusion

    Coil sketching is a general and versatile reconstruction framework for computationally fast and memory‐efficient reconstruction.

     
    more » « less
  2. Objective. Dynamic positron emission tomography (PET) imaging, which can provide information on dynamic changes in physiological metabolism, is now widely used in clinical diagnosis and cancer treatment. However, the reconstruction from dynamic data is extremely challenging due to the limited counts received in individual frame, especially in ultra short frames. Recently, the unrolled modelbased deep learning methods have shown inspiring results for low-count PET image reconstruction with good interpretability. Nevertheless, the existing model-based deep learning methods mainly focus on the spatial correlations while ignore the temporal domain. Approach. In this paper, inspired by the learned primal dual (LPD) algorithm, we propose the spatio-temporal primal dual network (STPDnet) for dynamic low-count PET image reconstruction. Both spatial and temporal correlations are encoded by 3D convolution operators. The physical projection of PET is embedded in the iterative learning process of the network, which provides the physical constraints and enhances interpretability. Main results. The experiments of both simulation data and real rat scan data have shown that the proposed method can achieve substantial noise reduction in both temporal and spatial domains and outperform the maximum likelihood expectation maximization, spatio-temporal kernel method, LPD and FBPnet. Significance. Experimental results show STPDnet better reconstruction performance in the low count situation, which makes the proposed method particularly suitable in whole-body dynamic imaging and parametric PET imaging that require extreme short frames and usually suffer from high level of noise. 
    more » « less
  3. Abstract Background

    Spectral CT material decomposition provides quantitative information but is challenged by the instability of the inversion into basis materials. We have previously proposed the constrained One‐Step Spectral CT Image Reconstruction (cOSSCIR) algorithm to stabilize the material decomposition inversion by directly estimating basis material images from spectral CT data. cOSSCIR was previously investigated on phantom data.

    Purpose

    This study investigates the performance of cOSSCIR using head CT datasets acquired on a clinical photon‐counting CT (PCCT) prototype. This is the first investigation of cOSSCIR for large‐scale, anatomically complex, clinical PCCT data. The cOSSCIR decomposition is preceded by a spectrum estimation and nonlinear counts correction calibration step to address nonideal detector effects.

    Methods

    Head CT data were acquired on an early prototype clinical PCCT system using an edge‐on silicon detector with eight energy bins. Calibration data of a step wedge phantom were also acquired and used to train a spectral model to account for the source spectrum and detector spectral response, and also to train a nonlinear counts correction model to account for pulse pileup effects. The cOSSCIR algorithm optimized the bone and adipose basis images directly from the photon counts data, while placing a grouped total variation (TV) constraint on the basis images. For comparison, basis images were also reconstructed by a two‐step projection‐domain approach of Maximum Likelihood Estimation (MLE) for decomposing basis sinograms, followed by filtered backprojection (MLE + FBP) or a TV minimization algorithm (MLE + TVmin) to reconstruct basis images. We hypothesize that the cOSSCIR approach will provide a more stable inversion into basis images compared to two‐step approaches. To investigate this hypothesis, the noise standard deviation in bone and soft‐tissue regions of interest (ROIs) in the reconstructed images were compared between cOSSCIR and the two‐step methods for a range of regularization constraint settings.

    Results

    cOSSCIR reduced the noise standard deviation in the basis images by a factor of two to six compared to that of MLE + TVmin, when both algorithms were constrained to produce images with the same TV. The cOSSCIR images demonstrated qualitatively improved spatial resolution and depiction of fine anatomical detail. The MLE + TVminalgorithm resulted in lower noise standard deviation than cOSSCIR for the virtual monoenergetic images (VMIs) at higher energy levels and constraint settings, while the cOSSCIR VMIs resulted in lower noise standard deviation at lower energy levels and overall higher qualitative spatial resolution. There were no statistically significant differences in the mean values within the bone region of images reconstructed by the studied algorithms. There were statistically significant differences in the mean values within the soft‐tissue region of the reconstructed images, with cOSSCIR producing mean values closer to the expected values.

    Conclusions

    The cOSSCIR algorithm, combined with our previously proposed spectral model estimation and nonlinear counts correction method, successfully estimated bone and adipose basis images from high resolution, large‐scale patient data from a clinical PCCT prototype. The cOSSCIR basis images were able to depict fine anatomical details with a factor of two to six reduction in noise standard deviation compared to that of the MLE + TVmintwo‐step approach.

     
    more » « less
  4. We propose a new learning-based approach to solve ill-posed inverse problems in imaging. We address the case where ground truth training samples are rare and the problem is severely ill-posed-both because of the underlying physics and because we can only get few measurements. This setting is common in geophysical imaging and remote sensing. We show that in this case the common approach to directly learn the mapping from the measured data to the reconstruction becomes unstable. Instead, we propose to first learn an ensemble of simpler mappings from the data to projections of the unknown image into random piecewise-constant subspaces. We then combine the projections to form a final reconstruction by solving a deconvolution-like problem. We show experimentally that the proposed method is more robust to measurement noise and corruptions not seen during training than a directly learned inverse. 
    more » « less
  5. The application of compressed sensing (CS)-enabled data reconstruction for accelerating magnetic resonance imaging (MRI) remains a challenging problem. This is due to the fact that the information lost in k-space from the acceleration mask makes it difficult to reconstruct an image similar to the quality of a fully sampled image. Multiple deep learning-based structures have been proposed for MRI reconstruction using CS, in both the k-space and image domains, and using unrolled optimization methods. However, the drawback of these structures is that they are not fully utilizing the information from both domains (k-space and image). Herein, we propose a deep learning-based attention hybrid variational network that performs learning in both the k-space and image domains. We evaluate our method on a well-known open-source MRI dataset (652 brain cases and 1172 knee cases) and a clinical MRI dataset of 243 patients diagnosed with strokes from our institution to demonstrate the performance of our network. Our model achieves an overall peak signal-to-noise ratio/structural similarity of 40.92 ± 0.29/0.9577 ± 0.0025 (fourfold) and 37.03 ± 0.25/0.9365 ± 0.0029 (eightfold) for the brain dataset, 31.09 ± 0.25/0.6901 ± 0.0094 (fourfold) and 29.49 ± 0.22/0.6197 ± 0.0106 (eightfold) for the knee dataset, and 36.32 ± 0.16/0.9199 ± 0.0029 (20-fold) and 33.70 ± 0.15/0.8882 ± 0.0035 (30-fold) for the stroke dataset. In addition to quantitative evaluation, we undertook a blinded comparison of image quality across networks performed by a subspecialty trained radiologist. Overall, we demonstrate that our network achieves a superior performance among others under multiple reconstruction tasks.

     
    more » « less