Solar flares, especially the M- and X-class flares, are often associated with coronal mass ejections. They are the most important sources of space weather effects, which can severely impact the near-Earth environment. Thus it is essential to forecast flares (especially the M- and X-class ones) to mitigate their destructive and hazardous consequences. Here, we introduce several statistical and machine-learning approaches to the prediction of an active region’s (AR) flare index (FI) that quantifies the flare productivity of an AR by taking into account the number of different class flares within a certain time interval. Specifically, our sample includes 563 ARs that appeared on the solar disk from 2010 May to 2017 December. The 25 magnetic parameters, provided by the Space-weather HMI Active Region Patches (SHARP) from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, characterize coronal magnetic energy stored in ARs by proxy and are used as the predictors. We investigate the relationship between these SHARP parameters and the FI of ARs with a machine-learning algorithm (spline regression) and the resampling method (Synthetic Minority Oversampling Technique for Regression with Gaussian Noise). Based on the established relationship, we are able to predict the value of FIs for a given AR within the next 1 day period. Compared with other four popular machine-learning algorithms, our methods improve the accuracy of FI prediction, especially for a large FI. In addition, we sort the importance of SHARP parameters by the Borda count method calculated from the ranks that are rendered by nine different machine-learning methods.
- Award ID(s):
- 1927578
- PAR ID:
- 10333237
- Date Published:
- Journal Name:
- Research in Astronomy and Astrophysics
- Volume:
- 21
- Issue:
- 7
- ISSN:
- 1674-4527
- Page Range / eLocation ID:
- 160
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Supervised Machine Learning (ML) models for solar flare prediction rely on accurate labels for a given input data set, commonly obtained from the GOES/XRS X-ray flare catalog. With increasing interest in utilizing ultraviolet (UV) and extreme ultraviolet (EUV) image data as input to these models, we seek to understand if flaring activity can be defined and quantified using EUV data alone. This would allow us to move away from the GOES single pixel measurement definition of flares and use the same data we use for flare prediction for label creation. In this work, we present a Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA)-based flare catalog covering flare of GOES X-ray magnitudes C, M and X from 2010 to 2017. We use active region (AR) cutouts of full disk AIA images to match the corresponding SDO/Helioseismic and Magnetic Imager (HMI) SHARPS (Space weather HMI Active Region Patches) that have been extensively used in ML flare prediction studies, thus allowing for labeling of AR number as well as flare magnitude and timing. Flare start, peak, and end times are defined using a peak-finding algorithm on AIA time series data obtained by summing the intensity across the AIA cutouts. An extremely randomized trees (ERT) regression model is used to map SDO/AIA flare magnitudes to GOES X-ray magnitude, achieving a low-variance regression. We find an accurate overlap on 85% of M/X flares between our resulting AIA catalog and the GOES flare catalog. However, we also discover a number of large flares unrecorded or mislabeled in the GOES catalog.
-
Abstract In this paper we present several methods to identify precursors that show great promise for early predictions of solar flare events. A data preprocessing pipeline is built to extract useful data from multiple sources, Geostationary Operational Environmental Satellites and Solar Dynamics Observatory (SDO)/Helioseismic and Magnetic Imager (HMI), to prepare inputs for machine learning algorithms. Two classification models are presented: classification of flares from quiet times for active regions and classification of strong versus weak flare events. We adopt deep learning algorithms to capture both spatial and temporal information from HMI magnetogram data. Effective feature extraction and feature selection with raw magnetogram data using deep learning and statistical algorithms enable us to train classification models to achieve almost as good performance as using active region parameters provided in HMI/Space‐Weather HMI‐Active Region Patch (SHARP) data files. Case studies show a significant increase in the prediction score around 20 hr before strong solar flare events.
-
Solar flares are characterized by sudden bursts of electromagnetic radiation from the Sun’s surface, and are caused by the changes in magnetic field states in active solar regions. Earth and its surrounding space environment can suffer from various negative impacts caused by solar flares, ranging from electronic communication disruption to radiation exposure-based health risks to astronauts. In this paper, we address the solar flare prediction problem from magnetic field parameter-based multivariate time series (MVTS) data using multiple state-of-the-art machine learning classifiers that include MINImally RandOm Convolutional KErnel Transform (MiniRocket), Support Vector Machine (SVM), Canonical Interval Forest (CIF), Multiple Representations Sequence Learner (Mr-SEQL), and a Long Short-Term Memory (LSTM)-based deep learning model. Our experiment is conducted on the Space Weather Analytics for Solar Flares (SWAN-SF) benchmark data set, which is a partitioned collection of MVTS data of active region magnetic field parameters spanning over nine years of operation of the Solar Dynamics Observatory (SDO). The MVTS instances of the SWAN-SF dataset are labeled by GOES X-ray flux-based flare class labels, and attributed to extreme class imbalance because of the rarity of the major flaring events (e.g., X and M). As a performance validation metric in this class-imbalanced dataset, we used the True Skill Statistic (TSS) score. Finally, we demonstrate the advantages of the MVTS learning algorithm MiniRocket, which outperformed the aforementioned classifiers without the need for essential data preprocessing steps such as normalization, statistical summarization, and class imbalance handling heuristics.
-
Abstract Solar flares are explosions on the Sun. They happen when energy stored in magnetic fields around solar active regions (ARs) is suddenly released. Solar flares and accompanied coronal mass ejections are sources of space weather, which negatively affects a variety of technologies at or near Earth, ranging from blocking high-frequency radio waves used for radio communication to degrading power grid operations. Monitoring and providing early and accurate prediction of solar flares is therefore crucial for preparedness and disaster risk management. In this article, we present a transformer-based framework, named SolarFlareNet, for predicting whether an AR would produce a
-class flare within the next 24 to 72 h. We consider three$$\gamma$$ classes, namely the$$\gamma$$ M5.0 class, the$$\ge$$ M class and the$$\ge$$ C class, and build three transformers separately, each corresponding to a$$\ge$$ class. Each transformer is used to make predictions of its corresponding$$\gamma$$ -class flares. The crux of our approach is to model data samples in an AR as time series and to use transformers to capture the temporal dynamics of the data samples. Each data sample consists of magnetic parameters taken from Space-weather HMI Active Region Patches (SHARP) and related data products. We survey flare events that occurred from May 2010 to December 2022 using the Geostationary Operational Environmental Satellite X-ray flare catalogs provided by the National Centers for Environmental Information (NCEI), and build a database of flares with identified ARs in the NCEI flare catalogs. This flare database is used to construct labels of the data samples suitable for machine learning. We further extend the deterministic approach to a calibration-based probabilistic forecasting method. The SolarFlareNet system is fully operational and is capable of making near real-time predictions of solar flares on the Web.$$\gamma$$