skip to main content


Title: Deep Neural Networks Based Solar Flare Prediction Using Compressed Full-disk Line-of-sight Magnetograms
The efforts in solar flare prediction have been engendered by the advancements in machine learning and deep learning methods. We present a new approach to flare prediction using full-disk compressed magnetogram images with Convolutional Neural Networks. We selected three prediction modes, among which two are binary for predicting the occurrence of ≥M1.0 and ≥C4.0 class flares and one is a multi-class mode for predicting the occurrence of more » « less
Award ID(s):
1931555
NSF-PAR ID:
10402087
Author(s) / Creator(s):
; ;
Editor(s):
Lossio-Ventura J.A.; Valverde-Rebaza J.; Diaz E.; Muñante D.; Gavidia-Calderon C.; Baria Valejo A.D.; Alatrista-Salas H.
Date Published:
Journal Name:
Communications in computer and information science
Volume:
1577
ISSN:
1865-0937
Page Range / eLocation ID:
380-396
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bifet A. ; Lorena A.C ; Ribeiro R.P. ; Gama J. ; Abreu p.H. (Ed.)
    This paper presents a post hoc analysis of a deep learning-based full-disk solar flare prediction model. We used hourly full-disk line-of-sight magnetogram images and selected binary prediction mode to predict the occurrence of ≥M1.0-class flares within 24 h. We leveraged custom data augmentation and sample weighting to counter the inherent class-imbalance problem and used true skill statistic and Heidke skill score as evaluation metrics. Recent advancements in gradient-based attention methods allow us to interpret models by sending gradient signals to assign the burden of the decision on the input features. We interpret our model using three post hoc attention methods: (i) Guided Gradient-weighted Class Activation Mapping, (ii) Deep Shapley Additive Explanations, and (iii) Integrated Gradients. Our analysis shows that full-disk predictions of solar flares align with characteristics related to the active regions. The key findings of this study are: (1) We demonstrate that our full disk model can tangibly locate and predict near-limb solar flares, which is a critical feature for operational flare forecasting, (2) Our candidate model achieves an average TSS=0.51±0.05 and HSS=0.38±0.08, and (3) Our evaluation suggests that these models can learn conspicuous features corresponding to active regions from full-disk magnetograms. 
    more » « less
  2. Solar flares are transient space weather events that pose a significant threat to space and ground-based technological systems, making their precise and reliable prediction crucial for mitigating potential impacts. This paper contributes to the growing body of research on deep learning methods for solar flare prediction, primarily focusing on highly overlooked near-limb flares and utilizing the attribution methods to provide a post hoc qualitative explanation of the model’s predictions. We present a solar flare prediction model, which is trained using hourly full-disk line-of-sight magnetogram images and employs a binary prediction mode to forecast ≥M-class flares that may occur within the following 24-hour period. To address the class imbalance, we employ a fusion of data augmentation and class weighting techniques; and evaluate the overall performance of our model using the true skill statistic (TSS) and Heidke skill score (HSS). Moreover, we applied three attribution methods, namely Guided Gradient-weighted Class Activation Mapping, Integrated Gradients, and Deep Shapley Additive Explanations, to interpret and cross-validate our model’s predictions with the explanations. Our analysis revealed that full-disk prediction of solar flares aligns with characteristics related to active regions (ARs). In particular, the key findings of this study are: (1) our deep learning models achieved an average TSS∼0.51 and HSS∼0.35, and the results further demonstrate a competent capability to predict near-limb solar flares and (2) the qualitative analysis of the model’s explanation indicates that our model identifies and uses features associated with ARs in central and near-limb locations from full-disk magnetograms to make corresponding predictions. In other words, our models learn the shape and texture-based characteristics of flaring ARs even when they are at near-limb areas, which is a novel and critical capability that has significant implications for operational forecasting. 
    more » « less
  3. Solar flare prediction is a central problem in space weather forecasting and has captivated the attention of a wide spectrum of researchers due to recent advances in both remote sensing as well as machine learning and deep learning approaches. The experimental findings based on both machine and deep learning models reveal significant performance improvements for task specific datasets. Along with building models, the practice of deploying such models to production environments under operational settings is a more complex and often time-consuming process which is often not addressed directly in research settings. We present a set of new heuristic approaches to train and deploy an operational solar flare prediction system for ≥M1.0-class flares with two prediction modes: full-disk and active region-based. In full-disk mode, predictions are performed on full-disk line-of-sight magnetograms using deep learning models whereas in active region-based models, predictions are issued for each active region individually using multivariate time series data instances. The outputs from individual active region forecasts and full-disk predictors are combined to a final full-disk prediction result with a meta-model. We utilized an equal weighted average ensemble of two base learners’ flare probabilities as our baseline meta learner and improved the capabilities of our two base learners by training a logistic regression model. The major findings of this study are: 1) We successfully coupled two heterogeneous flare prediction models trained with different datasets and model architecture to predict a full-disk flare probability for next 24 h, 2) Our proposed ensembling model, i.e., logistic regression, improves on the predictive performance of two base learners and the baseline meta learner measured in terms of two widely used metrics True Skill Statistic (TSS) and Heidke Skill Score (HSS), and 3) Our result analysis suggests that the logistic regression-based ensemble (Meta-FP) improves on the full-disk model (base learner) by ∼9% in terms TSS and ∼10% in terms of HSS. Similarly, it improves on the AR-based model (base learner) by ∼17% and ∼20% in terms of TSS and HSS respectively. Finally, when compared to the baseline meta model, it improves on TSS by ∼10% and HSS by ∼15%. 
    more » « less
  4. Abstract

    A hybrid two-stage machine-learning architecture that addresses the problem of excessive false positives (false alarms) in solar flare prediction systems is investigated. The first stage is a convolutional neural network (CNN) model based on the VGG-16 architecture that extracts features from a temporal stack of consecutive Solar Dynamics Observatory Helioseismic and Magnetic Imager magnetogram images to produce a flaring probability. The probability of flaring is added to a feature vector derived from the magnetograms to train an extremely randomized trees (ERT) model in the second stage to produce a binary deterministic prediction (flare/no-flare) in a 12 hr forecast window. To tune the hyperparameters of the architecture, a new evaluation metric is introduced: the “scaled True Skill Statistic.” It specifically addresses the large discrepancy between the true positive rate and the false positive rate in the highly unbalanced solar flare event training data sets. Through hyperparameter tuning to maximize this new metric, our two-stage architecture drastically reduces false positives by ≈48% without significantly affecting the true positives (reduction by ≈12%), when compared with predictions from the first-stage CNN alone. This, in turn, improves various traditional binary classification metrics sensitive to false positives, such as the precision, F1, and the Heidke Skill Score. The end result is a more robust 12 hr flare prediction system that could be combined with current operational flare-forecasting methods. Additionally, using the ERT-based feature-ranking mechanism, we show that the CNN output probability is highly ranked in terms of flare prediction relevance.

     
    more » « less
  5. Solar flares are characterized by sudden bursts of electromagnetic radiation from the Sun’s surface, and are caused by the changes in magnetic field states in active solar regions. Earth and its surrounding space environment can suffer from various negative impacts caused by solar flares, ranging from electronic communication disruption to radiation exposure-based health risks to astronauts. In this paper, we address the solar flare prediction problem from magnetic field parameter-based multivariate time series (MVTS) data using multiple state-of-the-art machine learning classifiers that include MINImally RandOm Convolutional KErnel Transform (MiniRocket), Support Vector Machine (SVM), Canonical Interval Forest (CIF), Multiple Representations Sequence Learner (Mr-SEQL), and a Long Short-Term Memory (LSTM)-based deep learning model. Our experiment is conducted on the Space Weather Analytics for Solar Flares (SWAN-SF) benchmark data set, which is a partitioned collection of MVTS data of active region magnetic field parameters spanning over nine years of operation of the Solar Dynamics Observatory (SDO). The MVTS instances of the SWAN-SF dataset are labeled by GOES X-ray flux-based flare class labels, and attributed to extreme class imbalance because of the rarity of the major flaring events (e.g., X and M). As a performance validation metric in this class-imbalanced dataset, we used the True Skill Statistic (TSS) score. Finally, we demonstrate the advantages of the MVTS learning algorithm MiniRocket, which outperformed the aforementioned classifiers without the need for essential data preprocessing steps such as normalization, statistical summarization, and class imbalance handling heuristics.

     
    more » « less