skip to main content


Title: A precise photometric ratio via laser excitation of the sodium layer – I. One-photon excitation using 342.78 nm light
ABSTRACT The largest uncertainty on measurements of dark energy using type Ia supernovae (SNeIa) is presently due to systematics from photometry; specifically to the relative uncertainty on photometry as a function of wavelength in the optical spectrum. We show that a precise constraint on relative photometry between the visible and near-infrared can be achieved at upcoming survey telescopes, such as at the Vera C. Rubin Observatory, via a laser source tuned to the 342.78 nm vacuum excitation wavelength of neutral sodium atoms. Using a high-power laser, this excitation will produce an artificial star, which we term a ‘laser photometric ratio star’ (LPRS) of de-excitation light in the mesosphere at wavelengths in vacuum of 589.16, 589.76, 818.55, and 819.70 nm, with the sum of the numbers of 589.16 and 589.76 nm photons produced by this process equal to the sum of the numbers of 818.55 and 819.70 nm photons, establishing a precise calibration ratio between, for example, the r and $z$ filters of the LSST camera at the Rubin Observatory. This technique can thus provide a novel mechanism for establishing a spectrophotometric calibration ratio of unprecedented precision for upcoming telescopic observations across astronomy and atmospheric physics; thus greatly improving the performance of upcoming measurements of dark energy parameters using type SNeIa. The second paper of this pair describes an alternative technique to achieve a similar, but brighter, LPRS than the technique described in this paper, by using two lasers near resonances at 589.16 and 819.71 nm, rather than the single 342.78 nm on-resonance laser technique described in this paper.  more » « less
Award ID(s):
2116679
NSF-PAR ID:
10333302
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
508
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
4399 to 4411
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT This paper is the second in a pair of papers on the topic of the generation of a two-colour artificial star [which we term a laser photometric ratio star (LPRS)] of de-excitation light from neutral sodium atoms in the mesosphere, for use in precision telescopic measurements in astronomy and atmospheric physics, and more specifically for the calibration of measurements of dark energy using type Ia supernovae. The two techniques, respectively, described in both this and the previous paper would each generate an LPRS with a precisely 1:1 ratio of yellow (589/590 nm) photons to near-infrared (819/820 nm) photons produced in the mesosphere. Both techniques would provide novel mechanisms for establishing a spectrophotometric calibration ratio of unprecedented precision, from above most of Earth’s atmosphere, for upcoming telescopic observations across astronomy and atmospheric physics; thus greatly improving the performance of upcoming measurements of dark energy parameters using type Ia supernovae. The technique described in this paper has the advantage of producing a much brighter (specifically, brighter by approximately a factor of 103) LPRS, using lower power (≤30 W average power) lasers, than the technique using a single 500 W average power laser described in the first paper of this pair. However, the technique described here would require polarization filters to be installed into the telescope camera in order to sufficiently remove laser atmospheric Rayleigh backscatter from telescope images, whereas the technique described in the first paper would only require more typical wavelength filters in order to sufficiently remove laser Rayleigh backscatter. 
    more » « less
  2. A spatial heterodyne Raman spectrometer (SHRS), constructed using a modular optical cage and lens tube system, is described for use with a commercial silica and a custom single-crystal (SC) sapphire fiber Raman probe. The utility of these fiber-coupled SHRS chemical sensors is demonstrated using 532 nm laser excitation for acquiring Raman measurements of solid (sulfur) and liquid (cyclohexane) Raman standards as well as real-world, plastic-bonded explosives (PBX) comprising 1,3,5- triamino- 2,4,6- trinitrobenzene (TATB) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) energetic materials. The SHRS is a fixed grating-based dispersive interferometer equipped with an array detector. Each Raman spectrum was extracted from its corresponding fringe image (i.e., interferogram) using a Fourier transform method. Raman measurements were acquired with the SHRS Littrow wavelength set at the laser excitation wavelength over a spectral range of ∼1750 cm−1with a spectral resolution of ∼8 cm−1for sapphire and ∼10 cm−1for silica fiber probes. The large aperture of the SHRS allows much larger fiber diameters to be used without degrading spectral resolution as demonstrated with the larger sapphire collection fiber diameter (330 μm) compared to the silica fiber (100 μm). Unlike the dual silica fiber Raman probe, the dual sapphire fiber Raman probe did not include filtering at the fiber probe tip nearest the sample. Even so, SC sapphire fiber probe measurements produced less background than silica fibers allowing Raman measurements as close as ∼85 cm−1to the excitation laser. Despite the short lengths of sapphire fiber used to construct the sapphire probe, well-defined, sharp sapphire Raman bands at 420, 580, and 750 cm−1were observed in the SHRS spectra of cyclohexane and the highly fluorescent HMX-based PBX. SHRS measurements of the latter produced low background interference in the extracted Raman spectrum because the broad band fluorescence (i.e., a direct current, or DC, component) does not contribute to the interferogram intensity (i.e., the alternating current, or AC, component). SHRS spectral resolution, throughput, and signal-to-noise ratio are also discussed along with the merits of using sapphire Raman bands as internal performance references and as internal wavelength calibration standards in Raman measurements.

     
    more » « less
  3. Abstract — Photoluminescence Excitation Spectroscopy (PLE) is a contactless characterization technique to quantify Shockley-Reed-Hall (SRH) lifetimes and recombination velocities in direct band gap experimental semiconductor materials and devices. It is also useful as to evaluate surface passivation and intermediate fabrication processes, since it can be implemented without the need for development of effective contact technologies. In this paper, we present a novel experimental PLE system for precision-based quantification of the aforementioned parameters as well as a system for which absolute PLE characterization may occur. Absolute PLE measurements can be used to directly calculate VOC for new photovoltaic (PV) material systems and devices. Key system capabilities include a continuous excitation spectrum from 300 nm –1.1 μm, automated characterization, up to 1 nm wavelength resolution (up to 60x higher than prior work), and a reduced ellipsometry requirement for post-processing of data. We utilize a GaAs double heterostructure (DH) and an InP crystalline wafer as calibration standards in comparison with data from an LED-based PLE to demonstrate the validity of the results obtained from this new system. Index Terms – photovoltaic cells, photoluminescence, charge carrier lifetime, gallium arsenide, indium phosphide. 
    more » « less
  4. Abstract

    As cosmic microwave background (CMB) photons traverse the universe, anisotropies can be induced via Thomson scattering (proportional to the electron density; optical depth) and inverse Compton scattering (proportional to the electron pressure; thermal Sunyaev–Zel’dovich effect). Measurements of anisotropy in optical depthτand Comptonyparameters are imprinted by the galaxies and galaxy clusters and are thus sensitive to the thermodynamic properties of the circumgalactic medium and intergalactic medium. We use an analytic halo model to predict the power spectrum of the optical depth (ττ), the cross-correlation between the optical depth and the Comptonyparameter (τy), and the cross-correlation between the optical depth and galaxy clustering (τg), and compare this model to cosmological simulations. We constrain the optical depths of halos atz≲ 3 using a technique originally devised to constrain patchy reionization at a higher redshift range. The forecasted signal-to-noise ratio is 2.6, 8.5, and 13, respectively, for a CMB-S4-like experiment and a Vera C. Rubin Observatory–like optical survey. We show that a joint analysis of these probes can constrain the amplitude of the density profiles of halos to 6.5% and the pressure profiles to 13%. These constraints translate to astrophysical parameters, such as the gas mass fraction,fg, which can be constrained to 5.3% uncertainty atz∼ 0. The cross-correlations presented here are complementary to other CMB and galaxy cross-correlations since they do not require spectroscopic galaxy redshifts and are another example of how such correlations are a powerful probe of the astrophysics of galaxy evolution.

     
    more » « less
  5. Abstract

    A flow cytometry method for enumerating marine heterotrophic bacteria and phytoplankton in a living or preserved sample using a low power solid state near‐ultraviolet laser is described. The method uses Hoechst 34580 to stain DNA in microbial cells in seawater samples. This stain is optimally excited at 375 nm unlike the similar Hoechst 33342, which requires ~ 350 nm excitation only available on more expensive lasers. Phytoplankton abundances from the Hoechst 34580 method are comparable to those of unstained samples and when analyzed by the Hoechst 33342 staining method. With this new method, nonpigmented marine bacteria and phytoplankton abundances are obtained simultaneously in a single sample as the Hoechst emission wavelength (~ 450 nm) is well separated from the emission wavelengths of chlorophyll and phycoerythrin fluorescence. Bacteria abundances are similar between this new method and those obtained with established Hoechst 33342 and SybrGreen I methods. Precision estimates (coefficient of variation) on populations with abundances near ~ 105cells mL−1are 1–3%, increasing to 3–9% at lower cell concentrations of 103cells mL−1. The Hoechst 34580 method is simple, requiring no heating or pretreatment with RNAse, can be used on unpreserved and formaldehyde‐preserved cells, and is amenable to at‐sea use with portable, compact, low power‐requiring flow cytometers.

     
    more » « less