skip to main content


Title: The Next Generation Virgo Cluster Survey. XXXIII. Stellar Population Gradients in the Virgo Cluster Core Globular Cluster System
Abstract We present a study of the stellar populations of globular clusters (GCs) in the Virgo Cluster core with a homogeneous spectroscopic catalog of 692 GCs within a major-axis distance R maj = 840 kpc from M87. We investigate radial and azimuthal variations in the mean age, total metallicity, [Fe/H], and α -element abundance of blue (metal-poor) and red (metal-rich) GCs using their co-added spectra. We find that the blue GCs have a steep radial gradient in [Z/H] within R maj = 165 kpc, with roughly equal contributions from [Fe/H] and [ α /Fe], and flat gradients beyond. By contrast, the red GCs show a much shallower gradient in [Z/H], which is entirely driven by [Fe/H]. We use GC-tagged Illustris simulations to demonstrate an accretion scenario where more massive satellites (with more metal- and α -rich GCs) sink further into the central galaxy than less massive ones, and where the gradient flattening occurs because of the low GC occupation fraction of low-mass dwarfs disrupted at larger distances. The dense environment around M87 may also cause the steep [ α /Fe] gradient of the blue GCs, mirroring what is seen in the dwarf galaxy population. The progenitors of red GCs have a narrower mass range than those of blue GCs, which makes their gradients shallower. We also explore spatial inhomogeneity in GC abundances, finding that the red GCs to the northwest of M87 are slightly more metal-rich. Future observations of GC stellar population gradients will be useful diagnostics of halo merger histories.  more » « less
Award ID(s):
1945310
NSF-PAR ID:
10333312
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
931
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We measure the metallicities of 374 red giant branch (RGB) stars in the isolated, quenched dwarf galaxy Tucana using Hubble Space Telescope narrowband (F395N) calcium H and K imaging. Our sample is a factor of ∼7 larger than what is available from previous studies. Our main findings are as follows. (i) A global metallicity distribution function (MDF) with[Fe/H]=1.550.04+0.04andσ[Fe/H]=0.540.03+0.03. (ii) A metallicity gradient of −0.54 ± 0.07 dexRe1(−2.1 ± 0.3 dex kpc−1) over the extent of our imaging (∼2.5Re), which is steeper than literature measurements. Our finding is consistent with predicted gradients from the publicly available FIRE-2 simulations, in which bursty star formation creates stellar population gradients and dark matter cores. (iii) Tucana’s bifurcated RGB has distinct metallicities: a blue RGB with[Fe/H]=1.780.06+0.06andσ[Fe/H]=0.440.06+0.07and a red RGB with[Fe/H]=1.080.07+0.07andσ[Fe/H]=0.420.06+0.06. (iv) At fixed stellar mass, Tucana is more metal-rich than Milky Way satellites by ∼0.4 dex, but its blue RGB is chemically comparable to the satellites. Tucana’s MDF appears consistent with star-forming isolated dwarfs, though MDFs of the latter are not as well populated. (v) About 2% of Tucana’s stars have [Fe/H] < −3% and 20% have [Fe/H] > −1. We provide a catalog for community spectroscopic follow-up.

     
    more » « less
  2. ABSTRACT

    Stellar-mass black holes (BHs) can be retained in globular clusters (GCs) until the present. Simulations of GC evolution find that the relaxation driven mass-loss rate is elevated if BHs are present, especially near dissolution. We capture this behaviour in a parametrized mass-loss rate, bench marked by results from N-body simulations, and use it to evolve an initial GC mass function (GCMF), similar to that of young massive clusters in the Local Universe, to an age of 12 Gyr. Low-metallicity GCs ([Fe/H] ≲ −1.5) have the highest mass-loss rates, because of their relatively high BH masses, which combined with their more radial orbits and stronger tidal field in the past explains the high turnover mass of the GCMF ($\sim 10^5\, {\rm M}_\odot$ ) at large Galactic radii ($\gtrsim 10\, {\rm kpc}$ ). The turnover mass at smaller Galactic radii is similar because of the upper mass truncation of the initial GCMF and the lower mass-loss rate due to the higher metallicities. The density profile in the Galaxy of mass lost from massive GCs ($\gtrsim 10^{5}\, {\rm M}_\odot$ ) resembles that of nitrogen-rich stars in the halo, confirming that these stars originated from GCs. We conclude that two-body relaxation is the dominant effect in shaping the GCMF from a universal initial GCMF, because including the effect of BHs reduces the need for additional disruption mechanisms.

     
    more » « less
  3. ABSTRACT

    We analyse the stellar abundances of massive galaxies (log M*/M⊙ > 10.5) at redshift, z = 2, in the IllustrisTNG simulation with the goal of guiding the interpretation of current and future observations, particularly from JWST. We find that the effective size, Re, of galaxies strongly affects the abundance measurements: both [Mg/H] and [Fe/H] are anticorrelated with Re, while the relative abundance [Mg/Fe] slightly increases with Re. The α enhancement as tracked by [Mg/Fe] traces the formation time-scale of a galaxy weakly, and mostly depends on Re. Aperture effects are important: measuring the stellar abundances within 1 kpc instead of within Re can make a large difference. These results are all due to a nearly universal, steeply declining stellar abundance profile that does not scale with galaxy size – Small galaxies appear metal-rich because their stars live in the inner part of the profile where abundances are high. The slope of this profile is mostly set by the gas-phase abundance profile and not substantially modified by stellar age gradients. The gas-phase abundance profile, in turn, is determined by the strong radial dependence of the gas fraction and star-formation efficiency. We develop a simple model to describe the chemical enrichment, in which each radial bin of a galaxy is treated as an independent closed-box system. This model reproduces the gas-phase abundance profile of simulated galaxies, but not the detailed distribution of their stellar abundances, for which gas and/or metal transport are likely needed.

     
    more » « less
  4. ABSTRACT Using a sample of red giant stars from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) Data Release 16, we infer the conditional distribution $p([\alpha /{\rm Fe}]\, |\, [{\rm Fe}/{\rm H}])$ in the Milky Way disk for the α-elements Mg, O, Si, S, and Ca. In each bin of [Fe/H] and Galactocentric radius R, we model p([α/Fe]) as a sum of two Gaussians, representing ‘low-α’ and ‘high-α’ populations with scale heights $z_1=0.45\, {\rm kpc}$ and $z_2=0.95\, {\rm kpc}$, respectively. By accounting for age-dependent and z-dependent selection effects in APOGEE, we infer the [α/Fe] distributions that would be found for a fair sample of long-lived stars covering all z. Near the Solar circle, this distribution is bimodal at sub-solar [Fe/H], with the low-α and high-α peaks clearly separated by a minimum at intermediate [α/Fe]. In agreement with previous results, we find that the high-α population is more prominent at smaller R, lower [Fe/H], and larger |z|, and that the sequence separation is smaller for Si and Ca than for Mg, O, and S. We find significant intrinsic scatter in [α/Fe] at fixed [Fe/H] for both the low-α and high-α populations, typically ∼0.04-dex. The means, dispersions, and relative amplitudes of this two-Gaussian description, and the dependence of these parameters on R, [Fe/H], and α-element, provide a quantitative target for chemical evolution models and a test for hydrodynamic simulations of disk galaxy formation. We argue that explaining the observed bimodality will probably require one or more sharp transitions in the disk’s gas accretion, star formation, or outflow history in addition to radial mixing of stellar populations. 
    more » « less
  5. Abstract

    We present new radial velocity measurements from the Magellan and the Anglo-Australian Telescopes for 175 previously known and 121 newly confirmed globular clusters (GCs) around NGC 5128, the nearest accessible massive early-type galaxy atD= 3.8 Mpc. Remarkably, 28 of these newly confirmed GCs are at projected radii>50(≳54 kpc), extending to ∼130 kpc, in the outer halo where few GCs had been confirmed in previous work. We identify several subsets of GCs that spatially trace halo substructures that are visible in red giant branch star maps of the galaxy. In some cases, these subsets of GCs are kinematically cold, and may be directly associated with and originate from these specific stellar substructures. From a combined kinematic sample of 645 GCs, we see evidence for coherent rotation at all radii, with a higher rotation amplitude for the metal-rich GC subpopulation. Using the tracer mass estimator, we measure a total enclosed mass of 2.5 ± 0.3 × 1012Mwithin ∼120 kpc, an estimate that will be sharpened with forthcoming dynamical modeling. The combined power of stellar mapping and GC kinematics makes NGC 5128 an ongoing keystone for understanding galaxy assembly at mass scales inaccessible in the Local Group.

     
    more » « less