skip to main content


Title: New Velocity Measurements of NGC 5128 Globular Clusters Out to 130 kpc: Outer Halo Kinematics, Substructure, and Dynamics*
Abstract

We present new radial velocity measurements from the Magellan and the Anglo-Australian Telescopes for 175 previously known and 121 newly confirmed globular clusters (GCs) around NGC 5128, the nearest accessible massive early-type galaxy atD= 3.8 Mpc. Remarkably, 28 of these newly confirmed GCs are at projected radii>50(≳54 kpc), extending to ∼130 kpc, in the outer halo where few GCs had been confirmed in previous work. We identify several subsets of GCs that spatially trace halo substructures that are visible in red giant branch star maps of the galaxy. In some cases, these subsets of GCs are kinematically cold, and may be directly associated with and originate from these specific stellar substructures. From a combined kinematic sample of 645 GCs, we see evidence for coherent rotation at all radii, with a higher rotation amplitude for the metal-rich GC subpopulation. Using the tracer mass estimator, we measure a total enclosed mass of 2.5 ± 0.3 × 1012Mwithin ∼120 kpc, an estimate that will be sharpened with forthcoming dynamical modeling. The combined power of stellar mapping and GC kinematics makes NGC 5128 an ongoing keystone for understanding galaxy assembly at mass scales inaccessible in the Local Group.

 
more » « less
Award ID(s):
1813708 1814208
NSF-PAR ID:
10407522
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
947
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 34
Size(s):
["Article No. 34"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present a stellar dynamical mass measurement of a newly detected supermassive black hole (SMBH) at the center of the fast-rotating, massive elliptical galaxy NGC 2693 as part of the MASSIVE survey. We combine high signal-to-noise ratio integral field spectroscopy (IFS) from the Gemini Multi-Object Spectrograph with wide-field data from the Mitchell Spectrograph at McDonald Observatory to extract and model stellar kinematics of NGC 2693 from the central ∼150 pc out to ∼2.5 effective radii. Observations from Hubble Space Telescope WFC3 are used to determine the stellar light distribution. We perform fully triaxial Schwarzschild orbit modeling using the latest TriOS code and a Bayesian search in 6D galaxy model parameter space to determine NGC 2693's SMBH mass (MBH), stellar mass-to-light ratio, dark matter content, and intrinsic shape. We findMBH=1.7±0.4×109Mand a triaxial intrinsic shape with axis ratiosp=b/a= 0.902 ± 0.009 andq=c/a=0.7210.010+0.011, triaxiality parameterT= 0.39 ± 0.04. In comparison, the best-fit orbit model in the axisymmetric limit and (cylindrical) Jeans anisotropic model of NGC 2693 preferMBH=2.4±0.6×109MandMBH=2.9±0.3×109M, respectively. Neither model can account for the non-axisymmetric stellar velocity features present in the IFS data.

     
    more » « less
  2. Abstract

    Quantifying the connection between galaxies and their host dark matter halos has been key for testing cosmological models on various scales. BelowM∼ 109M, such studies have primarily relied on the satellite galaxy population orbiting the Milky Way (MW). Here we present new constraints on the connection between satellite galaxies and their host dark matter subhalos using the largest sample of satellite galaxies in the Local Volume (D≲ 12 Mpc) to date. We use 250 confirmed and 71 candidate dwarf satellites around 27 MW-like hosts from the Exploration of Local VolumE Satellites (ELVES) Survey and use the semianalyticalSatGenmodel for predicting the population of dark matter subhalos expected in the same volume. Through a Bayesian model comparison of the observed and the forward-modeled satellite stellar mass functions (SSMFs), we infer the satellite stellar-to-halo mass relation. We find that the observed SSMF is best reproduced when subhalos at the low-mass end are populated by a relation of the formMMpeakα, with a moderate slope ofαconst=2.10±0.01and a low scatter, constant as a function of the peak halo mass, ofσconst=0.060.05+0.07. A model with a steeper slope (αgrow= 2.39 ± 0.06) and a scatter that grows with decreasingMpeakis also consistent with the observed SSMF but is not required. Our new model for the satellite–subhalo connection, based on hundreds of Local Volume satellite galaxies, is in line with what was previously derived using only MW satellites.

     
    more » « less
  3. Abstract

    We present13CO(J= 1 → 0) observations for the EDGE-CALIFA survey, which is a mapping survey of 126 nearby galaxies at a typical spatial resolution of 1.5 kpc. Using detected12CO emission as a prior, we detect13CO in 41 galaxies via integrated line flux over the entire galaxy and in 30 galaxies via integrated line intensity in resolved synthesized beams. Incorporating our CO observations and optical IFU spectroscopy, we perform a systematic comparison between the line ratio12/13I[12CO(J=10)]/I[13CO(J=10)]and the properties of the stars and ionized gas. Higher12/13values are found in interacting galaxies compared to those in noninteracting galaxies. The global12/13slightly increases with infrared colorF60/F100but appears insensitive to other host-galaxy properties such as morphology, stellar mass, or galaxy size. We also present azimuthally averaged12/13profiles for our sample up to a galactocentric radius of 0.4r25(∼6 kpc), taking into account the13CO nondetections by spectral stacking. The radial profiles of12/13are quite flat across our sample. Within galactocentric distances of 0.2r25, the azimuthally averaged12/13increases with the star formation rate. However, Spearman rank correlation tests show the azimuthally averaged12/13does not strongly correlate with any other gas or stellar properties in general, especially beyond 0.2r25from the galaxy centers. Our findings suggest that in the complex environments in galaxy disks,12/13is not a sensitive tracer for ISM properties. Dynamical disturbances, like galaxy interactions or the presence of a bar, also have an overall impact on12/13, which further complicates the interpretations of12/13variations.

     
    more » « less
  4. Abstract

    The merger of two galaxies, each hosting a supermassive black hole (SMBH) of mass 106Mor more, could yield a bound SMBH binary. For the early-type galaxy NGC 4472, we study how astrometry with a next-generation Very Large Array could be used to monitor the reflex motion of the primary SMBH of massMpri, as it is tugged on by the secondary SMBH of massMsec. Casting the orbit of the putative SMBH binary in terms of its periodP, semimajor axisabin, and mass ratioq=Msec/Mpri1, we find the following: (1) Orbits with fiducial periods ofP= 4 yr and 40 yr could be spatially resolved and monitored. (2) For a 95% accuracy of 2μas per monitoring epoch, subparsec values ofabincould be accessed over a range of mass ratios notionally encompassing majorq>14and minorq<14galaxy mergers. (3) If no reflex motion is detected forMpriafter 1 (10) yr of monitoring, an SMBH binary with periodP= 4 (40) yr and mass ratioq> 0.01 (0.003) could be excluded. This would suggest no present-day evidence for a past major merger like that recently simulated, where scouring by aq∼ 1 SMBH binary formed a stellar core with kinematic traits like those of NGC 4472. (4) Astrometric monitoring could independently check the upper limits onqfrom searches for continuous gravitational waves from NGC 4472.

     
    more » « less
  5. Abstract

    We present Dark Energy Spectroscopic Instrument (DESI) observations of the inner halo of M31, which reveal the kinematics of a recent merger—a galactic immigration event—in exquisite detail. Of the 11,416 sources studied in 3.75 hr of on-sky exposure time, 7438 are M31 sources with well-measured radial velocities. The observations reveal intricate coherent kinematic structure in the positions and velocities of individual stars: streams, wedges, and chevrons. While hints of coherent structures have been previously detected in M31, this is the first time they have been seen with such detail and clarity in a galaxy beyond the Milky Way. We find clear kinematic evidence for shell structures in the Giant Stellar Stream, the Northeast Shelf, and Western Shelf regions. The kinematics are remarkably similar to the predictions of dynamical models constructed to explain the spatial morphology of the inner halo. The results are consistent with the interpretation that much of the substructure in the inner halo of M31 is produced by a single galactic immigration event 1–2 Gyr ago. Significant numbers of metal-rich stars ([Fe/H] > − 0.5) are present in all of the detected substructures, suggesting that the immigrating galaxy had an extended star formation history. We also investigate the ability of the shells and Giant Stellar Stream to constrain the gravitational potential of M31, and estimate the mass within a projected radius of 125 kpc to belog10MNFW(<125kpc)/M=11.800.10+0.12. The results herald a new era in our ability to study stars on a galactic scale and the immigration histories of galaxies.

     
    more » « less