- Award ID(s):
- 2003302
- PAR ID:
- 10333331
- Date Published:
- Journal Name:
- The Journal of Physical Chemistry C
- Volume:
- 125
- Issue:
- 24
- ISSN:
- 1932-7447
- Page Range / eLocation ID:
- 13361 to 13369
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
This study employs all-atomistic (AA) molecular dynamics (MD) simulations to investigate the crystallization and melting behavior of polar and nonpolar polymer chains on monolayers of graphene and graphene oxide (GO). Polyvinyl alcohol (PVA) and polyethylene (PE) are used as representative polar and nonpolar polymers, respectively. A modified order parameter is introduced to quantify the degree of two-dimensional (2D) crystallization of polymer chains. Our results show that PVA and PE chains exhibit significantly different crystallization behavior. PVA chains tend to form a more rounded, denser, and folded-stemmed lamellar structure, while PE chains tend to form an elongated straight pattern. The presence of oxidation groups on the GO substrate reduces the crystallinity of both PVA and PE chains, which is derived from the analysis of modified order parameter. Meanwhile, the crystallization patterns of polymer chains are influenced by the percentage, chemical components, and distribution of the oxidation groups. In addition, our study reveals that 2D crystalized polymer chains exhibit different melting behavior depending on their polarity. PVA chains exhibit a more molecular weight-dependent melting temperature than PE chains, which have a lower melting temperature and are relatively insensitive to molecular weight. These findings highlight the critical role of substrate and chain polarity in the crystallization and melting of polymer chains. Overall, our study provides valuable insights into the design of graphene-based polymer heterostructures and composites with tailored properties.more » « less
-
Abstract It is widely accepted that solid‐state membranes are indispensable media for the graphene process, particularly transfer procedures. But these membranes inevitably bring contaminations and residues to the transferred graphene and consequently compromise the material quality. This study reports a newly observed free‐standing graphene‐water membrane structure, which replaces the conventional solid‐state supporting media with liquid film to sustain the graphene integrity and continuity. Experimental observation, theoretical model, and molecular dynamics simulations consistently indicate that the high surface tension of pure water and its large contact angle with graphene are essential factors for forming such a membrane structure. More interestingly, water surface tension ensures the flatness of graphene layers and renders high transfer quality on many types of target substrates. This report enriches the understanding of the interactions on reduced dimensional material while rendering an alternative approach for scalable layered material processing with ensured quality for advanced manufacturing.