skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spontaneous adsorption of ions on graphene at the electrolyte–graphene interface
Award ID(s):
1916894
PAR ID:
10238287
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Applied Physics Letters
Volume:
117
Issue:
20
ISSN:
0003-6951
Page Range / eLocation ID:
203102
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The past decade has witnessed a rapid growth of graphene plasmonics and their applications in different fields. Compared with conventional plasmonic materials, graphene enables highly confined plasmons with much longer lifetimes. Moreover, graphene plasmons work in an extended wavelength range, i.e., mid-infrared and terahertz regime, overlapping with the fingerprints of most organic and biomolecules, and have broadened their applications towards plasmonic biological and chemical sensors. In this review, we discuss intrinsic plasmonic properties of graphene and strategies both for tuning graphene plasmons as well as achieving higher performance by integrating graphene with plasmonic nanostructures. Next, we survey applications of graphene and graphene-hybrid materials in biosensors, chemical sensors, optical sensors, and sensors in other fields. Lastly, we conclude this review by providing a brief outlook and challenges of the field. Through this review, we aim to provide an overall picture of graphene plasmonic sensing and to suggest future trends of development of graphene plasmonics. 
    more » « less
  2. null (Ed.)
    Electrocatalysis plays an essential role in diverse electrochemical energy conversion processes that are vital for improving energy utilization efficiency and mitigating the aggravating global warming challenge. The noble metals such as platinum are generally the most frequently used electrocatalysts to drive these reactions and facilitate the relevant energy conversion processes. The high cost and scarcity of these materials pose a serious challenge for the wide-spread adoption and the sustainability of these technologies in the long run, which have motivated considerable efforts in searching for alternative electrocatalysts with reduced loading of precious metals or based entirely on earth-abundant metals. Of particular interest are graphene-supported single atom catalysts (G-SACs) that integrate the merits of heterogeneous catalysts and homogeneous catalysts, such as high activity, selectivity, stability, maximized atom utilization efficiency and easy separation from reactants/products. The graphene support features a large surface area, high conductivity and excellent (electro)-chemical stability, making it a highly attractive substrate for supporting single atom electrocatalysts for various electrochemical energy conversion processes. In this review, we highlight the recent advancements in G-SACs for electrochemical energy conversion, from the synthetic strategies and identification of the atomistic structure to electrocatalytic applications in a variety of reactions, and finally conclude with a brief prospect on future challenges and opportunities. 
    more » « less
  3. This study employs all-atomistic (AA) molecular dynamics (MD) simulations to investigate the crystallization and melting behavior of polar and nonpolar polymer chains on monolayers of graphene and graphene oxide (GO). Polyvinyl alcohol (PVA) and polyethylene (PE) are used as representative polar and nonpolar polymers, respectively. A modified order parameter is introduced to quantify the degree of two-dimensional (2D) crystallization of polymer chains. Our results show that PVA and PE chains exhibit significantly different crystallization behavior. PVA chains tend to form a more rounded, denser, and folded-stemmed lamellar structure, while PE chains tend to form an elongated straight pattern. The presence of oxidation groups on the GO substrate reduces the crystallinity of both PVA and PE chains, which is derived from the analysis of modified order parameter. Meanwhile, the crystallization patterns of polymer chains are influenced by the percentage, chemical components, and distribution of the oxidation groups. In addition, our study reveals that 2D crystalized polymer chains exhibit different melting behavior depending on their polarity. PVA chains exhibit a more molecular weight-dependent melting temperature than PE chains, which have a lower melting temperature and are relatively insensitive to molecular weight. These findings highlight the critical role of substrate and chain polarity in the crystallization and melting of polymer chains. Overall, our study provides valuable insights into the design of graphene-based polymer heterostructures and composites with tailored properties. 
    more » « less
  4. Abstract It is widely accepted that solid‐state membranes are indispensable media for the graphene process, particularly transfer procedures. But these membranes inevitably bring contaminations and residues to the transferred graphene and consequently compromise the material quality. This study reports a newly observed free‐standing graphene‐water membrane structure, which replaces the conventional solid‐state supporting media with liquid film to sustain the graphene integrity and continuity. Experimental observation, theoretical model, and molecular dynamics simulations consistently indicate that the high surface tension of pure water and its large contact angle with graphene are essential factors for forming such a membrane structure. More interestingly, water surface tension ensures the flatness of graphene layers and renders high transfer quality on many types of target substrates. This report enriches the understanding of the interactions on reduced dimensional material while rendering an alternative approach for scalable layered material processing with ensured quality for advanced manufacturing. 
    more » « less