We report on spectroscopic measurements on the 4f76s28S7/2∘−4f7(8S∘)6s6p(1P∘)8P5/2,7/2transitions at 466.32 nm and 462.85 nm, respectively, in neutral europium-151 and europium-153. The center of gravity frequencies for the 151 and 153 isotopes for both transitions are reported for the first time using saturated absorption spectroscopy. For the 6s6p(1P∘)8P5/2state, the center of gravity frequencies were found to be 642,894,493.3(4) MHz and 642,891,693.3(9) MHz for the 151 and 153 isotopes, respectively. The hyperfine constants for the upper state were found to beA(151)=−157.01(3)MHz,B(151)=74.5(4)MHz andA(153)=−69.43(14)MHz,B(153)=191.0(26)MHz. These hyperfine values are all consistent with previously published results except forB(151) that has a small discrepancy. The isotope shift was found to be 2799.54(20) MHz, a small discrepancy with previously published results. For the 6s6p(1P∘)8P7/2state, the center of gravity frequencies were found to be 647,708,930.6(6) MHz and 647,705,958.4(26) MHz for the 151 and 153 isotopes, respectively. The hyperfine constants for the upper state were found to beA(151)=−218.66(4)MHz,B(151)=−293.4(8)MHz andA(153)=−97.15(13)MHz,B(153)=−750(3)MHz. These values are all consistent with previously published results except forA(151) that has a small discrepancy. The isotope shift was found to be 2972.8(5) MHz, a small discrepancy with previously measured results.
more »
« less
Spectroscopy of a narrow cooling transition in Holmium
We report on accurate measurements of the hyperfine constants of the narrow cooling transition of neutral Holmium at 412.1 nm. This transition has a linewidth of 2.3 MHz and a Doppler temperature of 55 microK which renders it suitable for second stage laser cooling. The proximity of the wavelength to the strong cooling transition at 410.5 nm[1] renders this transition convenient for first and second stage cooling using a combined optical setup. The hyperfine constants were measured using Doppler free saturated absorption spectroscopy in a hollow cathode discharge. Relative measurements of the locations of the hyperfine levels were made using an EOM modulator with an RF offset relative to a stable ULE cavity reference. The A and B hyperfine constants were determined to be A= 715.85±0.15 MHz and B= 1013±16.0 MHz which significantly improves on the precision of earlier measurements.
more »
« less
- Award ID(s):
- 1707854
- PAR ID:
- 10333613
- Date Published:
- Journal Name:
- Bulletin of the American Physical Society
- Volume:
- 66
- Issue:
- 6
- ISSN:
- 0003-0503
- Page Range / eLocation ID:
- F01.00094
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report measurements of the absolute energies of the hyperfine components of the $$12s \ ^2S_{1/2}$$ and $$13s \ ^2S_{1/2}$$ levels of atomic cesium, $$^{133}$$Cs. Using the frequency difference between these components, we determine the hyperfine coupling constants for these states, and report these values with a relative uncertainty of $$\sim$$0.06\%. We also examine the hyperfine structure of the $$11d \ ^2D_{J}$$ ($J=3/2, 5/2$) states, and resolve the sign ambiguity of the hyperfine coupling constants from previous measurements of these states. We also derive new, high precision values for the state energies of the $$12s \ ^2S_{1/2}$$, $$13s \ ^2S_{1/2}$$ and $$11d \ ^2D_{J}$$ states of cesium.more » « less
-
Neutral Holmium′s 128 ground hyperfine states, the most of any non-radioactive element, is a testbed for quantum control of a very high dimensional Hilbert space, and offers a promising platform for quantum computing. Its high magnetic moment also makes magnetic trapping a potentially viable alternative to optical trapping. Previously we have cooled Holmium atoms in a MOT on a 410.5 nm transition, characterized its Rydberg spectra, and made measurements of the dynamic scalar and tensor polarizabilities. We report here on progress towards narrow line cooling and magnetic trapping of single atoms.more » « less
-
Heaven, Michael (Ed.)New analysis and spectra are reported for the gas-phase ammonia-formic acid complex. Calculations to deter- mine the theoretical barrier to internal rotation were conducted and led to the new internal rotation analysis of the dimer. Using the new analysis and calculations, 12 new lines were measured and assigned and included in the present analysis. This is the !rst internal rotation analysis for this complex. The measurements were made in the 7–22 GHz range using two Flygare-Balle type pulsed beam Fourier transform microwave (FTMW) spectrometers. The complex was analyzed as a hindered rotor and 20 A and 16 E state transitions were !t with the XIAM5 program. The rotational constants were determined to have the following values: A = 11970.19(9) MHz, B = 4331.479(4) MHz, and C = 3227.144(4) MHz. Rotational constants, quadrupole coupling constants, and internal rotor parameters were !t to the spectrum. Double resonance was used to verify line assignments and access higher frequencies. The barrier to internal rotation was found to be 195.18(7) cm 1. High level calculations are in good agreement with experimental values. The calculated V3 barrier values range from 168.3 to 212.8 cm 1.more » « less
-
Heaven, Michael (Ed.)The microwave spectra for a hydrogen-bonded trans-2 glyoxylic acid–water complex were measured in the 6–16 GHz frequency range using two Flygare-Balle type pulsed beam Fourier transform microwave (FTMW) spectrometers. The rotational constants for the dimer were determined to have the following values: A = 9384.2354(31), B = 1707.63973(73), and C = 1447.44879(56) MHz. The hydrogen bonded structures and rotational constants were calculated for the lowest energy dimglyoxylic acid - water using DFT, MP2 and CCSD calculations with various basis sets. The B3LYP/aug-cc-PVQZ-DG3 calculations yielded rotational constants of A = 9393.59, B = 1713.76, and C = 1453.23 MHz, in very good agreement with experimental values. The calculations show two feasible tunneling motions involving hydrogen atoms in this complex.more » « less
An official website of the United States government

