With the rapid development and popularization of additive manufacturing, different technologies, including, but not limited to, extrusion-, droplet-, and vat-photopolymerization-based fabrication techniques, have emerged that have allowed tremendous progress in three-dimensional (3D) printing in the past decades. Bioprinting, typically using living cells and/or biomaterials conformed by different printing modalities, has produced functional tissues. As a subclass of vat-photopolymerization bioprinting, digital light processing (DLP) uses digitally controlled photomasks to selectively solidify liquid photocurable bioinks to construct complex physical objects in a layer-by-layer manner. DLP bioprinting presents unique advantages, including short printing times, relatively low manufacturing costs, and decently high resolutions, allowing users to achieve significant progress in the bioprinting of tissue-like complex structures. Nevertheless, the need to accommodate different materials while bioprinting and improve the printing performance has driven the rapid progress in DLP bioprinters, which requires multiple pieces of knowledge ranging from optics, electronics, software, and materials beyond the biological aspects. This raises the need for a comprehensive review to recapitulate the most important considerations in the design and assembly of DLP bioprinters. This review begins with analyzing unique considerations and specific examples in the hardware, including the resin vat, optical system, and electronics. In the software, the workflow is analyzed, including the parameters to be considered for the control of the bioprinter and the voxelizing/slicing algorithm. In addition, we briefly discuss the material requirements for DLP bioprinting. Then, we provide a section with best practices and maintenance of a do-it-yourself DLP bioprinter. Finally, we highlight the future outlooks of the DLP technology and their critical role in directing the future of bioprinting. The state-of-the-art progress in DLP bioprinter in this review will provide a set of knowledge for innovative DLP bioprinter designs. 
                        more » 
                        « less   
                    
                            
                            Compensating the cell-induced light scattering effect in light-based bioprinting using deep learning
                        
                    
    
            Abstract Digital light processing (DLP)-based three-dimensional (3D) printing technology has the advantages of speed and precision comparing with other 3D printing technologies like extrusion-based 3D printing. Therefore, it is a promising biomaterial fabrication technique for tissue engineering and regenerative medicine. When printing cell-laden biomaterials, one challenge of DLP-based bioprinting is the light scattering effect of the cells in the bioink, and therefore induce unpredictable effects on the photopolymerization process. In consequence, the DLP-based bioprinting requires extra trial-and-error efforts for parameters optimization for each specific printable structure to compensate the scattering effects induced by cells, which is often difficult and time-consuming for a machine operator. Such trial-and-error style optimization for each different structure is also very wasteful for those expensive biomaterials and cell lines. Here, we use machine learning to learn from a few trial sample printings and automatically provide printer the optimal parameters to compensate the cell-induced scattering effects. We employ a deep learning method with a learning-based data augmentation which only requires a small amount of training data. After learning from the data, the algorithm can automatically generate the printer parameters to compensate the scattering effects. Our method shows strong improvement in the intra-layer printing resolution for bioprinting, which can be further extended to solve the light scattering problems in multilayer 3D bioprinting processes. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1907434
- PAR ID:
- 10333666
- Date Published:
- Journal Name:
- Biofabrication
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 1758-5082
- Page Range / eLocation ID:
- 015011
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Digital light processing (DLP) 3D printing has become a powerful manufacturing tool for the fast fabrication of complex functional structures. The rapid progress in DLP 3D printing has been linked to research on optical design factors and ink selection. This critical review highlights the main challenges in the DLP 3D printing of photopolymerizable inks. The kinetics equations of photopolymerization reaction in a DLP printer are solved, and the dependence of curing depth on the process optical parameters and ink chemical properties are explained. Developments in DLP platform design and ink selection are summarized, and the roles of monomer structure and molecular weight on printing resolution are shown by experimental data. A detailed guideline is presented to help engineers and scientists to select inks and optical parameters for fabricating functional structures for multi-material and 4D printing.more » « less
- 
            Three‐dimensional (3D) printing is an emerging technique that has shown promising success in engineering human tissues in recent years. Further development of vat‐photopolymerization printing modalities has significantly enhanced the complexity level for 3D printing of various functional structures and components. Similarly, the development of microfluidic chip systems is an emerging research sector with promising medical applications. This work demonstrates the coupling of a digital light processing (DLP) printing procedure with a microfluidic chip system to produce size‐tunable, 3D‐printable porosities with narrow pore size distributions within a gelatin methacryloyl (GelMA) hydrogel matrix. It is found that the generation of size‐tunable gas bubbles trapped within an aqueous GelMA hydrogel‐precursor can be controlled with high precision. Furthermore, the porosities are printed in two‐dimensional (2D) as well as in 3D using the DLP printer. In addition, the cytocompatibility of the printed porous scaffolds is investigated using fibroblasts, where high cell viabilities as well as cell proliferation, spreading, and migration are confirmed. It is anticipated that the strategy is widely applicable in a range of application areas such as tissue engineering and regenerative medicine, among others.more » « less
- 
            Abstract 3D bioprinting is a fabrication method with many biomedical applications, particularly within tissue engineering. The use of freezing during 3D bioprinting, aka "3D cryoprinting," can be utilized to create micopores within tissue-engineered scaffolds to enhance cell proliferation. When used with alginate bioinks, this type of 3D cryoprinting requires three steps: 3D printing, crosslinking, and freezing. This study investigated the influence of crosslinking order and cooling rate on the microstructure and mechanical properties of sodium alginate scaffolds. We designed and built a novel modular 3D printer in order to study the effects of these steps separately and to address many of the manufacturing issues associated with 3D cryoprinting. With the modular 3D printer, 3D printing, crosslinking, and freezing were conducted on separate modules yet remain part of a continuous manufacturing process. Crosslinking before the freezing step produced highly interconnected and directional pores, which are ideal for promoting cell growth. By controlling the cooling rate, it was possible to produce pores with diameters from a range of 5 μm to 40 μm. Tensile and firmness testing found that the use of freezing does not decrease the tensile strength of the printed objects, though there was a significant loss in firmness for strands with larger pores.more » « less
- 
            Abstract Liquid crystalline elastomers (LCEs) are anisotropic soft materials capable of large dimensional changes when subjected to a stimulus. The magnitude and directionality of the stimuli‐induced thermomechanical response is associated with the alignment of the LCE. Recent reports detail the preparation of LCEs by additive manufacturing (AM) techniques, predominately using direct ink write printing. Another AM technique, digital light process (DLP) 3D printing, has generated significant interest as it affords LCE free‐forms with high fidelity and resolution. However, one challenge of printing LCEs using vat polymerization methods such as DLP is enforcing alignment. Here, we document the preparation of aligned, main‐chain LCEs via DLP 3D printing using a 100 mT magnetic field. Systematic examination isolates the contribution of magnetic field strength, alignment time, and build layer thickness on the degree of orientation in 3D printed LCEs. Informed by this fundamental understanding, DLP is used to print complex LCE free‐forms with through‐thickness variation in both spatial orientations. The hierarchical variation in spatial orientation within LCE free‐forms is used to produce objects that exhibit mechanical instabilities upon heating. DLP printing of aligned LCEs opens new opportunities to fabricate stimuli‐responsive materials in form factors optimized for functional use in soft robotics and energy absorption.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    