Context. Solar nanoflares are small impulsive events releasing magnetic energy in the corona. If nanoflares follow the same physics as their larger counterparts, they should emit hard X-rays (HXRs) but with a rather faint intensity. A copious and continuous presence of nanoflares would result in a sustained HXR emission. These nanoflares could deliver enormous amounts of energy into the solar corona, possibly accounting for its high temperatures. To date, there has not been any direct observation of such persistent HXRs from the quiescent Sun. However, the quiet-Sun HXR emission was constrained in 2010 using almost 12 days of quiescent solar off-pointing observations by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). These observations set 2 σ upper limits at 3.4 × 10 −2 photons s −1 cm −2 keV −1 and 9.5 × 10 −4 photons s −1 cm −2 keV −1 for the 3–6 keV and 6–12 keV energy ranges, respectively. Aims. Observing faint HXR emission is challenging because it demands high sensitivity and dynamic range instruments. The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket experiment excels in these two attributes when compared with RHESSI. FOXSI completed its second and third successful flights (FOXSI-2 and -3) on December 11, 2014, and September 7, 2018, respectively. This paper aims to constrain the quiet-Sun emission in the 5–10 keV energy range using FOXSI-2 and -3 observations. Methods. To fully characterize the sensitivity of FOXSI, we assessed ghost ray backgrounds generated by sources outside of the field of view via a ray-tracing algorithm. We used a Bayesian approach to provide upper thresholds of quiet-Sun HXR emission and probability distributions for the expected flux when a quiet-Sun HXR source is assumed to exist. Results. We found a FOXSI-2 upper limit of 4.5 × 10 −2 photons s −1 cm −2 keV −1 with a 2 σ confidence level in the 5–10 keV energy range. This limit is the first-ever quiet-Sun upper threshold in HXR reported using ∼1 min observations during a period of high solar activity. RHESSI was unable to measure the quiet-Sun emission during active times due to its limited dynamic range. During the FOXSI-3 flight, the Sun exhibited a fairly quiet configuration, displaying only one aged nonflaring active region. Using the entire ∼6.5 min of FOXSI-3 data, we report a 2 σ upper limit of ∼10 −4 photons s −1 cm −2 keV −1 for the 5–10 keV energy range. Conclusions. The FOXSI-3 upper limits on quiet-Sun emission are similar to that previously reported, but FOXSI-3 achieved these results with only 5 min of observations or about 1/2600 less time than RHESSI. A possible future spacecraft using hard X-ray focusing optics like those in the FOXSI concept would allow enough observation time to constrain the current HXR quiet-Sun limits further, or perhaps even make direct detections. This is the first report of quiet-Sun HXR limits from FOXSI and the first science paper using FOXSI-3 observations. 
                        more » 
                        « less   
                    
                            
                            Cosmic ray ensembles as signatures of ultra-high energy photons interacting with the solar magnetic field
                        
                    
    
            Abstract Propagation of ultra-high energy photons in the solar magnetosphere gives rise to cascades comprising thousands of photons. We study the cascade development using Monte Carlo simulations and find that the photons in the cascades are spatially extended over millions of kilometers on the plane distant from the Sun by 1 AU. We estimate the chance of detection considering upper limits from current cosmic rays observatories in order to provide an optimistic estimate rate of 0.002 events per year from a chosen ring-shaped region around the Sun. We compare results from simulations which use two models of the solar magnetic field, and show that although signatures of such cascades are different for the models used, for practical detection purpose in the ground-based detectors, they are similar. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2010109
- PAR ID:
- 10333748
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Journal of Cosmology and Astroparticle Physics
- Volume:
- 2022
- Issue:
- 03
- ISSN:
- 1475-7516
- Page Range / eLocation ID:
- 038
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract A key goal of heliophysics is to understand how cosmic rays propagate in the solar system’s complex, dynamic environment. One observable is solar modulation, i.e., how the flux and spectrum of cosmic rays change as they propagate inward. We construct an improved force-field model, taking advantage of new measurements of magnetic power spectral density by Parker Solar Probe to predict solar modulation within the Earth’s orbit. We find that modulation of cosmic rays between the Earth and Sun is modest, at least at solar minimum and in the ecliptic plane. Our results agree much better with the limited data on cosmic-ray radial gradients within Earth’s orbit than past treatments of the force-field model. Our predictions can be tested with forthcoming direct cosmic-ray measurements in the inner heliosphere by Parker Solar Probe and Solar Orbiter. They are also important for interpreting the gamma-ray emission from the Sun due to scattering of cosmic rays with solar matter and photons.more » « less
- 
            We study the dynamics of the solar basin— the accumulated population of weakly-interacting particles on bound orbits in the Solar System. We focus on particles starting off on Sun-crossing orbits, corresponding to initial conditions of production inside the Sun, and investigate their evolution over the age of the Solar System. A combination of analytic methods, secular perturbation theory, and direct numerical integration of orbits sheds light on the long- and short-term evolution of a population of test particles orbiting the Sun and perturbed by the planets. Our main results are that the effective lifetime of a solar basin at Earth’s location is 1.20 ± 0.09 Gyr, and that there is annual (semi-annual) modulation of the basin density with known phase and amplitude at the fractional level of 6.5% (2.2%). These results have important implications for direct detection searches of solar basin particles, and the strong temporal modulation signature yields a robust discovery channel. Our simulations can also be interpreted in the context of gravitational capture of dark matter in the Solar System, with consequences for any dark-matter phenomenon that may occur below the local escape velocity.more » « less
- 
            Abstract Understanding primary productivity is a core research area of the National Science Foundation's Long-Term Ecological Research Network. This study presents the development of the GIS-based Topographic Solar Photosynthetically Active Radiation (T-sPAR) toolbox for Taylor Valley. It maps surface photosynthetically active radiation using four meteorological stations with ~20 years of data. T-sPAR estimates were validated with ground-truth data collected at Taylor Valley's major lakes during the 2014–15 and 2015–16 field seasons. The average daily error ranges from 0.13 mol photons m -2 day -1 (0.6%) at Lake Fryxell to 3.8 mol photons m -2 day -1 (5.8%) at Lake Hoare. We attribute error to variability in terrain and sun position. Finally, a user interface was developed in order to estimate total daily surface photosynthetically active radiation for any location and date within the basin. T-sPAR improves upon existing toolboxes and models by allowing for the inclusion of a statistical treatment of light attenuation due to cloud cover. The T-sPAR toolbox could be used to inform biological sampling sites based on radiation distribution, which could collectively improve estimates of net primary productivity, in some cases by up to 25%.more » « less
- 
            Context.On 13 March 2023, when the Parker Solar Probe spacecraft (S/C) was situated on the far side of the Sun as seen from Earth, a large solar eruption took place, which created a strong solar energetic particle (SEP) event observed by multiple S/C all around the Sun. The energetic event was observed at six well-separated locations in the heliosphere, provided by the Parker Solar Probe, Solar Orbiter, BepiColombo, STEREO A, near-Earth S/C, and MAVEN at Mars. Clear signatures of an in situ shock crossing and a related energetic storm particle (ESP) event were observed at all inner-heliospheric S/C, suggesting that the interplanetary coronal mass ejection (CME)-driven shock extended all around the Sun. However, the solar event was accompanied by a series of pre-event CMEs. Aims.We aim to characterize this extreme widespread SEP event and to provide an explanation for the unusual observation of a circumsolar interplanetary shock and a corresponding circumsolar ESP event. Methods.We analyzed data from seven space missions, namely Parker Solar Probe, Solar Orbiter, BepiColombo, STEREO A, SOHO, Wind, and MAVEN, to characterize the solar eruption at the Sun, the energetic particle event, and the interplanetary context at each observer location as well as the magnetic connectivity of each observer to the Sun. We then employed magnetohydrodynamic simulations of the solar wind in which we injected various CMEs that were launched before as well as contemporaneously with the solar eruption under study. In particular, we tested two different scenarios that could have produced the observed global ESP event: (1) a single circumsolar blast-wave-like shock launched by the associated solar eruption, and (2) the combination of multiple CMEs driving shocks into different directions. Results.By comparing the simulations of the two scenarios with observations, we find that both settings are able to explain the observations. However, the blast-wave scenario performs slightly better in terms of the predicted shock arrival times at the various observers. Conclusions.Our work demonstrates that a circumsolar ESP event, driven by a single solar eruption into the inner heliosphere, is a realistic scenario.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    