Abstract We present the first survey of quiet Sun features observed in hard X-rays (HXRs), using the Nuclear Spectroscopic Telescope ARray (NuSTAR), a HXR focusing optics telescope. The recent solar minimum, combined with NuSTAR’s high sensitivity, has presented a unique opportunity to perform the first HXR imaging spectroscopy on a range of features in the quiet Sun. By studying the HXR emission of these features, we can detect or constrain the presence of high temperature (> 5 MK) or non-thermal sources, to help understand how they relate to larger, more energetic solar phenomena, and determine their contribution to heating the solar atmosphere. We report on several features observed in the 28 September 2018 NuSTAR full-disk quiet Sun mosaics, the first of the NuSTAR quiet Sun observing campaigns, which mostly include steady features of X-ray bright points and an emerging flux region, which later evolved into an active region, as well as a short-lived jet. We find that the features’ HXR spectra are well fitted with isothermal models with temperatures ranging between 2.0 – 3.2 MK. Combining the NuSTAR data with softer X-ray emission from Hinode/XRT and EUV from SDO/AIA, we recover the differential emission measures, confirming little significant emission above 4 MK. The NuSTAR HXR spectra allow us to constrain the possible non-thermal emission that would still be consistent with a null HXR detection. We found that for only one of the features (the jet) was there a potential non-thermal upper limit capable of powering the heating observed. However, even here, the non-thermal electron distribution had to be very steep (effectively mono-energetic) with a low energy cut-off between 3 – 4 keV.
more »
« less
The faintest solar coronal hard X-rays observed with FOXSI
Context. Solar nanoflares are small impulsive events releasing magnetic energy in the corona. If nanoflares follow the same physics as their larger counterparts, they should emit hard X-rays (HXRs) but with a rather faint intensity. A copious and continuous presence of nanoflares would result in a sustained HXR emission. These nanoflares could deliver enormous amounts of energy into the solar corona, possibly accounting for its high temperatures. To date, there has not been any direct observation of such persistent HXRs from the quiescent Sun. However, the quiet-Sun HXR emission was constrained in 2010 using almost 12 days of quiescent solar off-pointing observations by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). These observations set 2 σ upper limits at 3.4 × 10 −2 photons s −1 cm −2 keV −1 and 9.5 × 10 −4 photons s −1 cm −2 keV −1 for the 3–6 keV and 6–12 keV energy ranges, respectively. Aims. Observing faint HXR emission is challenging because it demands high sensitivity and dynamic range instruments. The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket experiment excels in these two attributes when compared with RHESSI. FOXSI completed its second and third successful flights (FOXSI-2 and -3) on December 11, 2014, and September 7, 2018, respectively. This paper aims to constrain the quiet-Sun emission in the 5–10 keV energy range using FOXSI-2 and -3 observations. Methods. To fully characterize the sensitivity of FOXSI, we assessed ghost ray backgrounds generated by sources outside of the field of view via a ray-tracing algorithm. We used a Bayesian approach to provide upper thresholds of quiet-Sun HXR emission and probability distributions for the expected flux when a quiet-Sun HXR source is assumed to exist. Results. We found a FOXSI-2 upper limit of 4.5 × 10 −2 photons s −1 cm −2 keV −1 with a 2 σ confidence level in the 5–10 keV energy range. This limit is the first-ever quiet-Sun upper threshold in HXR reported using ∼1 min observations during a period of high solar activity. RHESSI was unable to measure the quiet-Sun emission during active times due to its limited dynamic range. During the FOXSI-3 flight, the Sun exhibited a fairly quiet configuration, displaying only one aged nonflaring active region. Using the entire ∼6.5 min of FOXSI-3 data, we report a 2 σ upper limit of ∼10 −4 photons s −1 cm −2 keV −1 for the 5–10 keV energy range. Conclusions. The FOXSI-3 upper limits on quiet-Sun emission are similar to that previously reported, but FOXSI-3 achieved these results with only 5 min of observations or about 1/2600 less time than RHESSI. A possible future spacecraft using hard X-ray focusing optics like those in the FOXSI concept would allow enough observation time to constrain the current HXR quiet-Sun limits further, or perhaps even make direct detections. This is the first report of quiet-Sun HXR limits from FOXSI and the first science paper using FOXSI-3 observations.
more »
« less
- Award ID(s):
- 1752268
- PAR ID:
- 10433580
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Astronomy & Astrophysics
- Volume:
- 665
- ISSN:
- 0004-6361
- Page Range / eLocation ID:
- A103
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Solar active regions (ARs) contain a broad range of temperatures, with the thermal plasma distribution often observed to peak in the few millions of kelvin. Differential emission measure (DEM) analysis can allow instruments with diverse temperature responses to be used in concert to estimate this distribution. Nuclear Spectroscopic Telescope ARray (NuSTAR) hard X-ray (HXR) observations are uniquely sensitive to the highest-temperature components of the corona, and thus extremely powerful for examining signatures of reconnection-driven heating. Here, we use NuSTAR diagnostics in combination with extreme-ultraviolet and soft X-ray observations (from the Solar Dynamics Observatory/Atmospheric Imaging Assembly and Hinode/X-Ray Telescope) to construct DEMs over 170 distinct time intervals during a 5 hr observation of an alternately flaring and quiet active region (NOAA designation AR 12712). This represents the first HXR study to examine the time evolution of the distribution of thermal plasma in an AR. During microflares, we find that the initial microflare-associated plasma heating is predominantly heating of material that is already relatively hot, followed later on by broader heating of initially cooler material. During quiescent times, we show that the amount of extremely hot (>10 MK) material in this region is significantly (∼2–4 orders of magnitude) less than that found in the quiescent AR observed in HXRs by FOXSI-2. This result implies there can be radically different high-temperature thermal distributions in different ARs, and strongly motivates future HXR DEM studies covering a large number of these regions.more » « less
-
We study the evolution of solar eruptive events by investigating the temporal relationships among magnetic reconnection, flare energy release, and the acceleration of coronal mass ejections (CMEs). Leveraging the optimal viewing geometry of the Solar TErrestrial RElations Observatory (STEREO) relative to the Solar Dynamics Observatory (SDO) and the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) during 2010–2013, we identify 12 events with sufficient spatial and temporal coverage for a detailed examination. STEREO and SDO data are used to measure the CME kinematics and the reconnection rate, respectively, and hard X-ray (HXR) measurements from RHESSI provide a signature of the flare energy release. This analysis expands upon previous solar eruptive event timing studies by examining the fast-varying features, or “bursts,” in the HXR and reconnection rate profiles, which represent episodes of energy release. Through a time lag correlation analysis, we find that HXR bursts occur throughout the main CME acceleration phase for most events, with the HXR bursts lagging the acceleration by 2 ± 9 minutes for fast CMEs. Additionally, we identify a nearly one-to-one correspondence between bursts in the HXR and reconnection rate profiles, with HXRs lagging the reconnection rate by 1.4 ± 2.8 minutes. The studied events fall into two categories: events with a single dominant HXR burst and events with a train of multiple HXR bursts. Events with multiple HXR bursts, indicative of intermittent reconnection and/or particle acceleration, are found to correspond with faster CMEs.more » « less
-
Abstract A number of double coronal X-ray sources have been observed during solar flares by RHESSI, where the two sources reside at different sides of the inferred reconnection site. However, where and how these X-ray-emitting electrons are accelerated remains unclear. Here we present the first model of the double coronal hard X-ray (HXR) sources, where electrons are accelerated by a pair of termination shocks driven by bidirectional fast reconnection outflows. We model the acceleration and transport of electrons in the flare region by numerically solving the Parker transport equation using velocity and magnetic fields from the macroscopic magnetohydrodynamic simulation of a flux rope eruption. We show that electrons can be efficiently accelerated by the termination shocks and high-energy electrons mainly concentrate around the two shocks. The synthetic HXR emission images display two distinct sources extending to >100 keV below and above the reconnection region, with the upper source much fainter than the lower one. The HXR energy spectra of the two coronal sources show similar spectral slopes, consistent with the observations. Our simulation results suggest that the flare termination shock can be a promising particle acceleration mechanism in explaining the double-source nonthermal emissions in solar flares.more » « less
-
Abstract We analyze high-resolution observations of an X-1.0 white-light flare, triggered by a filament eruption, on 2022 October 2. The full process of filament formation and subsequent eruption was captured in the Hαpassband by the Visible Imaging Spectrograph (VIS) on board the Goode Solar Telescope (GST) within its center field of view. White-light emissions appear in flare ribbons following the filament eruption and Hαribbon brightening. GST Broadband Filter Imager data show that the continuum intensity, as compared to the nearby quiet-Sun area, has increased by up to 20% in the photospheric TiO band around 7057 Å. The Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory reported 10% contrast enhancement in the continuum near Fei6173 Å line. The separation motion of two white-light kernels is recorded by the high-cadence GST/TiO images and is well accompanied by the motion of the VIS Hαflare ribbon leading edge. One kernel, located in a 150 Gauss field within a granulation area, exhibited an average apparent motion speed of 55 km s−1, which is the highest average speed ever reported. The other kernel drifted at 9 km s−1in an 800 Gauss magnetic field area. Hard X-ray (HXR) emissions reaching up to 300 keV have been observed for this flare. The simultaneous occurrence of high-cadence HXR, microwave, and white-light emissions strongly suggests that the energetic particles from the flare directly contribute to the heating. The inverted HXR energy flux density corresponding to 10% TiO brightening is 2.07 ± 0.23 × 1011erg cm−2s−1during the flare peak.more » « less