- Award ID(s):
- 1912134
- Publication Date:
- NSF-PAR ID:
- 10333885
- Journal Name:
- Journal of Climate
- Volume:
- 35
- Issue:
- 9
- Page Range or eLocation-ID:
- 2895 to 2917
- ISSN:
- 0894-8755
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A comparative analysis between observational data from McMurdo Station, Antarctica and the Community Atmosphere Model version 6 (CAM6) simulation is performed focusing on cloud characteristics and their thermodynamic conditions. Ka‐band Zenith Radar (KAZR) and High Spectral Resolution Lidar (HSRL) retrievals are used as the basis of cloud fraction and cloud phase identifications. Radiosondes released at 12‐h increments provide atmospheric profiles for evaluating the simulated thermodynamic conditions. Our findings show that the CAM6 simulation consistently overestimates (underestimates) cloud fraction above (below) 3 km in four seasons of a year. Normalized by total in‐cloud samples, ice and mixed phase occurrence frequencies are underestimated and liquid phase frequency is overestimated by the model at cloud fractions above 0.6, while at cloud fractions below 0.6 ice phase frequency is overestimated and liquid‐containing phase frequency is underestimated by the model. The cloud fraction biases are closely associated with concurrent biases in relative humidity (RH), that is, high (low) RH biases above (below) 2 km. Frequencies of correctly simulating ice and liquid‐containing phase increase when the absolute biases of RH decrease. Cloud fraction biases also show a positive correlation with RH biases. Water vapor mixing ratio biases are the primary contributor to RH biases, and hence, likelymore »
-
Abstract The Indian Ocean has an intriguing intertropical convergence zone (ITCZ) south of the equator year-round, which remains largely unexplored. Here we investigate this Indian Ocean ITCZ and the mechanisms for its origin. With a weak semiannual cycle, this ITCZ peaks in January–February with the strongest rainfall and southernmost location and a northeast–southwest orientation from the Maritime Continent to Madagascar, reaches a minimum around May with a zonal orientation, grows until its secondary maximum around September with a northwest–southeast orientation, weakens slightly until December, and then regains its mature phase in January. During austral summer, the Indian Ocean ITCZ exists over maximum surface moist static energy (MSE), consistent with convective quasi-equilibrium theory. This relationship breaks up during boreal summer when the surface MSE maximizes in the northern monsoon region. The position and orientation of the Indian Ocean ITCZ can be simulated well in both a linear dynamical model and the state-of-the-art Community Atmosphere Model version 6 (CAM6) when driven by observed sea surface temperature (SST). To quantify the contributions of the planetary boundary layer (PBL) and free-atmosphere processes to this ITCZ, we homogenize the free-atmosphere diabatic heating over the Indian Ocean in CAM6. In response, the ITCZ weakens significantly, owingmore »
-
Abstract Three climate models are evaluated using in situ airborne observations from the Southern Ocean Clouds, Radiation, Aerosol Transport Experimental Study (SOCRATES) campaign. The evaluation targets cloud phases, microphysical properties, thermodynamic conditions, and aerosol indirect effects from −40°C to 0°C. Compared with 580‐s averaged observations (i.e., 100 km horizontal scale), the Community Atmosphere Model version 6 (CAM6) shows the most similar result for cloud phase frequency distribution and allows more liquid‐containing clouds below −10°C compared with its predecessor—CAM5. The Energy Exascale Earth System Model (E3SM) underestimates (overestimates) ice phase frequencies below (above) −20°C. CAM6 and E3SM show liquid and ice water contents (i.e., LWC and IWC) similar to observations from −25°C to 0°C, but higher LWC and lower IWC than observations at lower temperatures. Simulated in‐cloud RH shows higher minimum values than observations, possibly restricting ice growth during sedimentation. As number concentrations of aerosols larger than 500 nm (Na500) increase, observations show increases of LWC, IWC, liquid, and ice number concentrations (Nliq, Nice). Number concentrations of aerosols larger than 100 nm (Na100) only show positive correlations with LWC and Nliq. From −20°C to 0°C, higher aerosol number concentrations are correlated with lower glaciation ratio and higher cloud fraction. From −40°C to −20°C, largemore »
-
Aerosols affect cirrus formation and evolution, yet quantification of these effects remain difficult based on in-situ observations due to the complexity of nucleation mechanisms and large variabilities in ice microphysical properties. This work employed a method to distinguish five evolution phases of cirrus clouds based on in-situ aircraft-based observations from seven U.S. National Science Foundation (NSF) and five NASA flight campaigns. Both homogeneous and heterogeneous nucleation were captured in the 1-Hz aircraft observations, inferred from the distributions of relative humidity in the nucleation phase. Using linear regressions to quantify the correlations between cirrus microphysical properties and aerosol number concentrations, we found that ice water content (IWC) and ice crystal number concentration (Ni) show strong positive correlations with larger aerosols (> 500 nm) in the nucleation phase, indicating strong contributions of heterogeneous nucleation when ice crystals first start to nucleate. For the later growth phase, IWC and Ni show similar positive correlations with larger and smaller (i.e., > 100 nm) aerosols, possibly due to fewer remaining ice nucleating particles in the later growth phase that allows more homogeneous nucleation to occur. Both 200-m and 100-km observations were compared with the nudged simulations from the National Center for Atmospheric Research (NCAR) Communitymore »