skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Conservation of Dry Air, Water, and Energy in CAM and Its Potential Impact on Tropical Rainfall
Abstract For the Community Atmosphere Model version 6 (CAM6), an adjustment is needed to conserve dry air mass. This adjustment exposes an inconsistency in how CAM6’s energy budget incorporates water—in CAM6 water in the vapor phase has energy, but condensed phases of water do not. When water vapor condenses, only its latent energy is retained in the model, while its remaining internal, potential, and kinetic energy are lost. A global fixer is used in the default CAM6 model to maintain global energy conservation, but locally the energy tendency associated with water changing phase violates the divergence theorem. This error in energy tendency is intrinsically tied to the water vapor tendency, and reaches its highest values in regions of heavy rainfall, where the error can be as high as 40 W m −2 annually averaged. Several possible changes are outlined within this manuscript that would allow CAM6 to satisfy the divergence theorem locally. These fall into one of two categories: 1) modifying the surface flux to balance the local atmospheric energy tendency and 2) modifying the local atmospheric tendency to balance the surface plus top-of-atmosphere energy fluxes. To gauge which aspects of the simulated climate are most sensitive to this error, the simplest possible change—where condensed water still does not carry energy and a local energy fixer is used in place of the global one—is implemented within CAM6. Comparing this experiment with the default configuration of CAM6 reveals precipitation, particularly its variability, to be highly sensitive to the energy budget formulation. Significance Statement This study examines and explains spurious regional sources and sinks of energy in a widely used climate model. These energy errors result from not tracking energy associated with water after it transitions from the vapor phase to either liquid or ice. Instead, the model used a global fixer to offset the energy tendency related to the energy sources and sinks associated with condensed water species. We replace this global fixer with a local one to examine the model sensitivity to the regional energy error and find a large sensitivity in the simulated hydrologic cycle. This work suggests that the underlying thermodynamic assumptions in the model should be revisited to build confidence in the model-simulated regional-scale water and energy cycles.  more » « less
Award ID(s):
1912134
PAR ID:
10333885
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Climate
Volume:
35
Issue:
9
ISSN:
0894-8755
Page Range / eLocation ID:
2895 to 2917
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Motivated by the hemispheric asymmetry of land distribution on Earth, we explore the climate of Northland, a highly idealized planet with a Northern Hemisphere continent and a Southern Hemisphere ocean. The climate of Northland can be separated into four distinct regions: the Southern Hemisphere ocean, the seasonally wet tropics, the midlatitude desert, and the Great Northern Swamp. We evaluate how modifying land surface properties on Northland drives changes in temperatures, precipitation patterns, the global energy budget, and atmospheric dynamics. We observe a surprising response to changes in land surface evaporation, where suppressing terrestrial evaporation in Northland cools both land and ocean. In previous studies, suppressing terrestrial evaporation has been found to lead to local warming by reducing latent cooling of the land surface. However, reduced evaporation can also decrease atmospheric water vapor, reducing the strength of the greenhouse effect and leading to large-scale cooling. We use a set of idealized climate model simulations to show that suppressing terrestrial evaporation over Northern Hemisphere continents of varying size can lead to either warming or cooling of the land surface, depending on which of these competing effects dominates. We find that a combination of total land area and contiguous continent size controls the balance between local warming from reduced latent heat flux and large-scale cooling from reduced atmospheric water vapor. Finally, we demonstrate how terrestrial heat capacity, albedo, and evaporation all modulate the location of the ITCZ both over the continent and over the ocean. 
    more » « less
  2. Abstract The polar regions are predicted to experience the largest relative change in precipitation in response to increased greenhouse-gas concentrations, where a substantial absolute increase in precipitation coincides with small precipitation rates in the present-day climate. The reasons for this amplification, however, are still debated. Here, we use an atmospheric energy budget to decompose regional precipitation change from climate models under greenhouse-gas forcing into contributions from atmospheric radiative feedbacks, dry-static energy flux divergence changes, and surface sensible heat flux changes. The polar-amplified relative precipitation change is shown to be a consequence of the Planck feedback, which, when combined with larger polar warming, favors substantial atmospheric radiative cooling that balances increases in latent heat release from precipitation. Changes in the dry-static energy flux divergence contribute modestly to the polar-amplified pattern. Additional contributions to the polar-amplified response come, in the Arctic, from the cloud feedback and, in the Antarctic, from both the cloud and water vapor feedbacks. The primary contributor to the intermodel spread in the relative precipitation change in the polar region is also the Planck feedback, with the lapse rate feedback and dry-static energy flux divergence changes playing secondary roles. For all regions, there are strong covariances between radiative feedbacks and changes in the dry-static energy flux divergence that impact the intermodel spread. These results imply that constraining regional precipitation change, particularly in the polar regions, will require constraining not only individual feedbacks but also the covariances between radiative feedbacks and atmospheric energy transport. 
    more » « less
  3. The Maximum Entropy Production (MEP) method for modeling surface energy budget has been developed and validated at local, regional and global scale including the Arctic regions. The MEP model has solid theoretical foundation built on the Bayesian probability theory, information theory, non-equilibrium thermodynamics and boundary layer turbulence theory. Its formulation has advantageous features including closing energy budget at any space-time scales, independence of moisture and temperature gradient, wind speed and surface roughness, and free of tunable empirical parameters. Application of the MEP model has been covering all types of land covers including Arctic permafrost tundra, sea ice and snow surfaces. Recent tests using field experimental observations suggest that the MEP model using fewer input data and model parameters is able to simulate surface energy budget accurately. It is a more efficient alternative to the classical Penman-Monteith model of potential evapotranspiration. The MEP method has potential to influence the study of Arctic water-energy cycles and climate change. 
    more » « less
  4. Abstract End of 21st‐century hydroclimate projections suggest an expansion of subtropical dry zones, with Mediterranean and Sahel regions becoming much drier. However, paleobotanical assemblage evidence from the middle Miocene (17‐12 Ma), suggests both regions were instead humid environments. Here we show that by modifying regional sea surface temperatures (SST) in an Earth System Model (CESM1.2) simulation of the middle Miocene, the increased ocean evaporation and integrated water vapor flux overrides any drying effects associated with warming‐induced land‐surface evaporation driven by atmospheric CO2concentrations. These modifications markedly reduce the bias in the model‐data comparison for this period. A vegetation model (BIOME4) forced with simulated climatologies predicts both regions were dominated by mixed forest, which is largely consistent with the paleobotanical record. This study unveils the potential for wetter subtropical Mediterranean climates associated with warming, presenting an alternative scenario from future drying projections with localized SST warming governing regional climate change. 
    more » « less
  5. The combination of precipitation formation and fallout affects atmospheric flows through the release of latent heat and through the removal of mass from the atmosphere, but because the mass of water vapor is only a small fraction of the total mass of Earth's atmosphere, precipitation mass sinks are often neglected in theory and models. However, a small number of modeling studies suggest that water mass sources and sinks can intensify heavily precipitating weather systems. These studies point to a need to more systematically verify the impact of neglecting precipitation mass sinks, particularly for warmer and moister climates in which precipitation rates can be much higher. In this paper, we add precipitation mass sources and sinks to an idealized general circulation model and examine their effects on steady-state midlatitude storm track statistics. The model has several idealizations, including that all condensates immediately fall out of the atmosphere, and is run across a wide range of climates, including very warm climates. We find that modifying the model to include mass sources and sinks has no detectable effect on midlatitude variability or extremes, even in climates much warmer and moister than the modern. However, we find that a 10-fold exaggeration of mass sources and sinks is sufficient to produce more intense midlatitude weather extremes and increase surface pressure variance. This result is consistent with theoretical potential vorticity analysis, which suggests that the dynamical effects of mass sources and sinks are much smaller than the dynamical effects of accompanying latent heating unless mass sinks are artificially amplified by at least a factor of 10. Finally, we use simulations of “tropical cyclone worlds” to attempt to reconcile our results with earlier work showing stronger deepening in a simulation of a tropical cyclone case study when precipitation mass sinks were included. We demonstrate that abruptly “turning on” mass sources and sinks can lead to stronger transient deepening in some individual storms (consistent with results of past work) but weaker transient deepening in other storms, without modifying the steady-state statistics of storms in equilibrium with the large-scale environment (consistent with our other results). Our results provide a firmer foundation for using general circulation models that neglect moist mass sources and sinks in climate simulations, even in climates much warmer than today, while leaving open the possibility that their inclusion might lead to short-term improvements in forecast skill. 
    more » « less