skip to main content

Title: Dynamically Exploring the QCD Matter at Finite Temperatures and Densities: A Short Review
We provide a concise review on recent theory advancements towards full-fledged (3+1)D dynamical descriptions of relativistic nuclear collisions at finite baryon density. Heavy-ion collisions at different collision energies produce strongly coupled matter and probe the QCD phase transition at the crossover, critical point, and first-order phase transition regions. Dynamical frameworks provide a quantitative tool to extract properties of hot QCD matter and map fireballs to the QCD phase diagram. Outstanding challenges are highlighted when confronting current theoretical frameworks with current and forthcoming experimental measurements from the RHIC beam energy scan programs.
; ;
Award ID(s):
Publication Date:
Journal Name:
Chinese Physics Letters
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. David, G. ; Garg, P. ; Kalweit, A. ; Mukherjee, S. ; Ullrich, T. ; Xu, Z. ; Yoo, I.-K. (Ed.)
    Recent theory progress in (3+1)D dynamical descriptions of relativistic nuclear collisions at finite baryon density are reviewed. Heavy-ion collisions at different collision energies produce strongly coupled nuclear matter to probe the phase structure of Quantum Chromodynamics (QCD). Dynamical frameworks serve as a quantitative tool to study properties of hot QCD matter and map collisions to the QCD phase diagram. Outstanding challenges are highlighted when confronting theoretical models with the current and forthcoming experimental measurements from the RHIC beam energy scan program.
  2. In this article, there are 18 sections discussing various current topics in the field of relativistic heavy-ion collisions and related phenomena, which will serve as a snapshot of the current state of the art. Section 1 reviews experimental results of some recent light-flavored particle production data from ALICE collaboration. Other sections are mostly theoretical in nature. Very strong but transient magnetic field created in relativistic heavy-ion collisions could have important observational consequences. This has generated a lot of theoretical activity in the last decade. Sections 2, 7, 9, 10 and 11 deal with the effects of the magnetic field on the properties of the QCD matter. More specifically, Sec. 2 discusses mass of [Formula: see text] in the linear sigma model coupled to quarks at zero temperature. In Sec. 7, one-loop calculation of the anisotropic pressure are discussed in the presence of strong magnetic field. In Sec. 9, chiral transition and chiral susceptibility in the NJL model is discussed for a chirally imbalanced plasma in the presence of magnetic field using a Wigner function approach. Sections 10 discusses electrical conductivity and Hall conductivity of hot and dense hadron gas within Boltzmann approach and Sec. 11 deals with electrical resistivity ofmore »quark matter in presence of magnetic field. There are several unanswered questions about the QCD phase diagram. Sections 3, 11 and 18 discuss various aspects of the QCD phase diagram and phase transitions. Recent years have witnessed interesting developments in foundational aspects of hydrodynamics and their application to heavy-ion collisions. Sections 12 and 15–17 of this article probe some aspects of this exciting field. In Sec. 12, analytical solutions of viscous Landau hydrodynamics in 1+1D are discussed. Section 15 deals with derivation of hydrodynamics from effective covariant kinetic theory. Sections 16 and 17 discuss hydrodynamics with spin and analytical hydrodynamic attractors, respectively. Transport coefficients together with their temperature- and density-dependence are essential inputs in hydrodynamical calculations. Sections 5, 8 and 14 deal with calculation/estimation of various transport coefficients (shear and bulk viscosity, thermal conductivity, relaxation times, etc.) of quark matter and hadronic matter. Sections 4, 6 and 13 deal with interesting new developments in the field. Section 4 discusses color dipole gluon distribution function at small transverse momentum in the form of a series of Bells polynomials. Section 6 discusses the properties of Higgs boson in the quark–gluon plasma using Higgs–quark interaction and calculate the Higgs decays into quark and anti-quark, which shows a dominant on-shell contribution in the bottom-quark channel. Section 13 discusses modification of coalescence model to incorporate viscous corrections and application of this model to study hadron production from a dissipative quark–gluon plasma.« less
  3. In this work, we discuss the deconfinement phase transition to quark matter in hot/dense matter. We examine the effect that different charge fractions, isospin fractions, net strangeness, and chemical equilibrium with respect to leptons have on the position of the coexistence line between different phases. In particular, we investigate how different sets of conditions that describe matter in neutron stars and their mergers, or matter created in heavy-ion collisions affect the position of the critical end point, namely where the first-order phase transition becomes a crossover. We also present an introduction to the topic of critical points, including a review of recent advances concerning QCD critical points.
  4. We study the phase transitions at finite temperature and density of the magnetic dual chiral density wave (MDCDW) phase. This spatially inhomogeneous phase emerges in cold, dense QCD in the presence of a strong magnetic field. Starting from the generalized Ginzburg-Landau (GL) expansion of the free energy, we derive several analytical formulas that enable fast numerical computation of the expansion coefficients to arbitrary order, allowing high levels of precision in the determination of the physical dynamical parameters, as well as in the transition curves in the temperature vs chemical potential plane at different magnetic fields. At magnetic fields and temperatures compatible with neutron star (NS) conditions, the MDCDW remains favored over the symmetric ground state at all densities. The phase’s “resilience” manifests in (1) a region of small but nonzero remnant mass and significant modulation at intermediate densities, originating in part from the nontrivial topology of the lowest Landau level, and (2) a region of increasing condensate parameters at high densities. Our analysis suggests the MDCDW condensate remains energetically favored at densities and temperatures much higher than previously considered, opening the possibility for this phase to be a viable candidate for the matter structure of even young neutron stars producedmore »by binary neutron star (BNS) mergers.« less

    We model neutron stars as magnetized hybrid stars with an abrupt hadron–quark phase transition in their cores, taking into account current constraints from nuclear experiments and multimessenger observations. We include magnetic field effects considering the Landau level quantization of charged particles and the anomalous magnetic moment of neutral particles. We construct the magnetized hybrid equation of state, and we compute the particle population, the matter magnetization and the transverse and parallel pressure components. We integrate the stable stellar models, considering the dynamical stability for rapid or slow hadron–quark phase conversion. Finally, we calculate the frequencies and damping times of the fundamental and g non-radial oscillation modes. The latter, a key mode to learn about phase transitions in compact objects, is only obtained for stars with slow conversions. For low magnetic fields, we find that one of the objects of the GW170817 binary system might be a hybrid star belonging to the slow extended stability branch. For magnetars, we find that a stronger magnetic field always softens the hadronic equation of state. Besides, only for some parameter combinations a stronger magnetic field implies a higher hybrid star maximum mass. Contrary to previous results, the incorporation of anomalous magnetic moment does not affectmore »the studied astrophysical quantities. We discuss possible imprints of the microphysics of the equation of state that could be tested observationally in the future, and that might help infer the nature of dense matter and hybrid stars.

    « less