Title: Dynamically Exploring the QCD Matter at Finite Temperatures and Densities: A Short Review
We provide a concise review on recent theory advancements towards full-fledged (3+1)D dynamical descriptions of relativistic nuclear collisions at finite baryon density. Heavy-ion collisions at different collision energies produce strongly coupled matter and probe the QCD phase transition at the crossover, critical point, and first-order phase transition regions. Dynamical frameworks provide a quantitative tool to extract properties of hot QCD matter and map fireballs to the QCD phase diagram. Outstanding challenges are highlighted when confronting current theoretical frameworks with current and forthcoming experimental measurements from the RHIC beam energy scan programs. more »« less
Recent theory progress in (3+1)D dynamical descriptions of relativistic nuclear collisions at finite baryon density are reviewed. Heavy-ion collisions at different collision energies produce strongly coupled nuclear matter to probe the phase structure of Quantum Chromodynamics (QCD). Dynamical frameworks serve as a quantitative tool to study properties of hot QCD matter and map collisions to the QCD phase diagram. Outstanding challenges are highlighted when confronting theoretical models with the current and forthcoming experimental measurements from the RHIC beam energy scan program.
In this work, we discuss the deconfinement phase transition to quark matter in hot/dense matter. We examine the effect that different charge fractions, isospin fractions, net strangeness, and chemical equilibrium with respect to leptons have on the position of the coexistence line between different phases. In particular, we investigate how different sets of conditions that describe matter in neutron stars and their mergers, or matter created in heavy-ion collisions affect the position of the critical end point, namely where the first-order phase transition becomes a crossover. We also present an introduction to the topic of critical points, including a review of recent advances concerning QCD critical points.
Karthein, Jamie M
(, Journal of Physics: Conference Series)
Fluctuations provide a powerful tool for elucidating the nature of strongly-interacting matter in the QCD phase diagram. In heavy-ion-collision systems, the net-particle number fluctuations are captured at the moment of chemical freeze-out. Studies of the chemical freeze-out via susceptibilities from lattice QCD and the Hadron Resonance Gas model contribute to the characterization of the transition region of the QCD phase diagram. This contribution to proceedings will show how susceptibilities can be used to study the interplay between different conserved charges via cross-correlators and to constrain interactions in the hadron gas phase.
Jaiswal, Amaresh; Haque, Najmul; Abhishek, Aman; Abir, Raktim; Bandyopadhyay, Aritra; Banu, Khatiza; Bhadury, Samapan; Bhattacharyya, Sumana; Bhattacharyya, Trambak; Biswas, Deeptak; et al
(, International Journal of Modern Physics E)
null
(Ed.)
In this article, there are 18 sections discussing various current topics in the field of relativistic heavy-ion collisions and related phenomena, which will serve as a snapshot of the current state of the art. Section 1 reviews experimental results of some recent light-flavored particle production data from ALICE collaboration. Other sections are mostly theoretical in nature. Very strong but transient magnetic field created in relativistic heavy-ion collisions could have important observational consequences. This has generated a lot of theoretical activity in the last decade. Sections 2, 7, 9, 10 and 11 deal with the effects of the magnetic field on the properties of the QCD matter. More specifically, Sec. 2 discusses mass of [Formula: see text] in the linear sigma model coupled to quarks at zero temperature. In Sec. 7, one-loop calculation of the anisotropic pressure are discussed in the presence of strong magnetic field. In Sec. 9, chiral transition and chiral susceptibility in the NJL model is discussed for a chirally imbalanced plasma in the presence of magnetic field using a Wigner function approach. Sections 10 discusses electrical conductivity and Hall conductivity of hot and dense hadron gas within Boltzmann approach and Sec. 11 deals with electrical resistivity of quark matter in presence of magnetic field. There are several unanswered questions about the QCD phase diagram. Sections 3, 11 and 18 discuss various aspects of the QCD phase diagram and phase transitions. Recent years have witnessed interesting developments in foundational aspects of hydrodynamics and their application to heavy-ion collisions. Sections 12 and 15–17 of this article probe some aspects of this exciting field. In Sec. 12, analytical solutions of viscous Landau hydrodynamics in 1+1D are discussed. Section 15 deals with derivation of hydrodynamics from effective covariant kinetic theory. Sections 16 and 17 discuss hydrodynamics with spin and analytical hydrodynamic attractors, respectively. Transport coefficients together with their temperature- and density-dependence are essential inputs in hydrodynamical calculations. Sections 5, 8 and 14 deal with calculation/estimation of various transport coefficients (shear and bulk viscosity, thermal conductivity, relaxation times, etc.) of quark matter and hadronic matter. Sections 4, 6 and 13 deal with interesting new developments in the field. Section 4 discusses color dipole gluon distribution function at small transverse momentum in the form of a series of Bells polynomials. Section 6 discusses the properties of Higgs boson in the quark–gluon plasma using Higgs–quark interaction and calculate the Higgs decays into quark and anti-quark, which shows a dominant on-shell contribution in the bottom-quark channel. Section 13 discusses modification of coalescence model to incorporate viscous corrections and application of this model to study hadron production from a dissipative quark–gluon plasma.
We establish the correspondence between two well-known frameworks for quantum chromodynamics (QCD) multiple scattering in nuclear media: the color glass condensate (CGC) and the high-twist (HT) expansion formalism. We argue that a consistent matching between both frameworks, in their common domain of validity, is achieved by incorporating the subeikonal longitudinal momentum phase in the CGC formalism, which mediates the transition between coherent and incoherent scattering. We perform a detailed calculation and analysis of direct photon production in proton-nucleus scattering as a concrete example to establish the matching between HT and CGC up to twist-4, including initial- and final-state interactions, as well as their interferences. The techniques developed in this work can be adapted to other processes in electron-nucleus and proton-nucleus collisions, and they provide a potential avenue for a unified picture of dilute-dense dynamics in nuclear media.
Wu, Shanjin, Shen, Chun, and Song, Huichao. Dynamically Exploring the QCD Matter at Finite Temperatures and Densities: A Short Review. Retrieved from https://par.nsf.gov/biblio/10333914. Chinese Physics Letters 38.8 Web. doi:10.1088/0256-307X/38/8/081201.
Wu, Shanjin, Shen, Chun, & Song, Huichao. Dynamically Exploring the QCD Matter at Finite Temperatures and Densities: A Short Review. Chinese Physics Letters, 38 (8). Retrieved from https://par.nsf.gov/biblio/10333914. https://doi.org/10.1088/0256-307X/38/8/081201
@article{osti_10333914,
place = {Country unknown/Code not available},
title = {Dynamically Exploring the QCD Matter at Finite Temperatures and Densities: A Short Review},
url = {https://par.nsf.gov/biblio/10333914},
DOI = {10.1088/0256-307X/38/8/081201},
abstractNote = {We provide a concise review on recent theory advancements towards full-fledged (3+1)D dynamical descriptions of relativistic nuclear collisions at finite baryon density. Heavy-ion collisions at different collision energies produce strongly coupled matter and probe the QCD phase transition at the crossover, critical point, and first-order phase transition regions. Dynamical frameworks provide a quantitative tool to extract properties of hot QCD matter and map fireballs to the QCD phase diagram. Outstanding challenges are highlighted when confronting current theoretical frameworks with current and forthcoming experimental measurements from the RHIC beam energy scan programs.},
journal = {Chinese Physics Letters},
volume = {38},
number = {8},
author = {Wu, Shanjin and Shen, Chun and Song, Huichao},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.