skip to main content


Title: Probing into emission mechanisms of GRB 190530A using time-resolved spectra and polarization studies: Synchrotron Origin?
Abstract Multi-pulsed GRB 190530A, detected by the GBM and LAT onboard Fermi, is the sixth most fluent GBM burst detected so far. This paper presents the timing, spectral, and polarimetric analysis of the prompt emission observed using AstroSat and Fermi to provide insight into the prompt emission radiation mechanisms. The time-integrated spectrum shows conclusive proof of two breaks due to peak energy and a second lower energy break. Time-integrated (55.43 ± 21.30 %) as well as time-resolved polarization measurements, made by the Cadmium Zinc Telluride Imager (CZTI) onboard AstroSat, show a hint of high degree of polarization. The presence of a hint of high degree of polarization and the values of low energy spectral index (αpt) do not run over the synchrotron limit for the first two pulses, supporting the synchrotron origin in an ordered magnetic field. However, during the third pulse, αpt exceeds the synchrotron line of death in few bins, and a thermal signature along with the synchrotron component in the time-resolved spectra is observed. Furthermore, we also report the earliest optical observations constraining afterglow polarization using the MASTER (P < 1.3 %) and the redshift measurement (z= 0.9386) obtained with the 10.4m GTC telescopes. The broadband afterglow can be described with a forward shock model for an ISM-like medium with a wide jet opening angle. We determine a circumburst density of n0 ∼ 7.41, kinetic energy EK ∼ 7.24 × 1054 erg, and radiated γ-ray energy Eγ, iso ∼ 6.05 × 1054 erg, respectively.  more » « less
Award ID(s):
2011759
NSF-PAR ID:
10333959
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
ISSN:
0035-8711
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Aims. With the accumulation of polarization data in the gamma-ray burst (GRB) prompt phase, polarization models can be tested. Methods. We predicted the time-integrated polarizations of 37 GRBs with polarization observation. We used their observed spectral parameters to do this. In the model, the emission mechanism is synchrotron radiation, and the magnetic field configuration in the emission region was assumed to be large-scale ordered. Therefore, the predicted polarization degrees (PDs) are upper limits. Results. For most GRBs detected by the Gamma-ray Burst Polarimeter (GAP), POLAR, and AstroSat, the predicted PD can match the corresponding observed PD. Hence the synchrotron-emission model in a large-scale ordered magnetic field can interpret both the moderately low PDs (∼10%) detected by POLAR and relatively high PDs (∼45%) observed by GAP and AstroSat well. Therefore, the magnetic fields in these GRB prompt phases or at least during the peak times are dominated by the ordered component. However, the predicted PDs of GRB 110721A observed by GAP and GRB 180427A observed by AstroSat are both lower than the observed values. Because the synchrotron emission in an ordered magnetic field predicts the upper-limit of the PD for the synchrotron-emission models, PD observations of the two bursts challenge the synchrotron-emission model. Then we predict the PDs of the High-energy Polarimetry Detector (HPD) and Low-energy Polarimetry Detector (LPD) on board the upcoming POLAR-2. In the synchrotron-emission models, the concentrated PD values of the GRBs detected by HPD will be higher than the LPD, which might be different from the predictions of the dissipative photosphere model. Therefore, more accurate multiband polarization observations are highly desired to test models of the GRB prompt phase. 
    more » « less
  2. ABSTRACT We report on detailed multiwavelength observations and analysis of the very bright and long GRB 210619B, detected by the Atmosphere-Space Interactions Monitor installed on the International Space Station and the Gamma-ray Burst Monitor (GBM) on-board the Fermi mission. Our main goal is to understand the radiation mechanisms and jet composition of GRB 210619B. With a measured redshift of z = 1.937, we find that GRB 210619B falls within the 10 most luminous bursts observed by Fermi so far. The energy-resolved prompt emission light curve of GRB 210619B exhibits an extremely bright hard emission pulse followed by softer/longer emission pulses. The low-energy photon index (αpt) values obtained using the time-resolved spectral analysis of the burst suggest a transition between the thermal (during harder pulse) to non-thermal (during softer pulse) outflow. We examine the correlation between spectral parameters and find that both peak energy and αpt exhibit the flux tracking pattern. The late time broad-band photometric data set can be explained within the framework of the external forward shock model with νm < νc < νx (where νm, νc, and νx are the synchrotron peak, cooling-break, and X-ray frequencies, respectively) spectral regime supporting a rarely observed hard electron energy index (p < 2). We find moderate values of host extinction of E(B − V) = 0.14 ± 0.01 mag for the small magellanic cloud extinction law. In addition, we also report late-time optical observations with the 10.4 m Gran Telescopio de Canarias placing deep upper limits for the host galaxy (z = 1.937), favouring a faint, dwarf host for the burst. 
    more » « less
  3. Abstract We present a detailed prompt emission and early optical afterglow analysis of the two very-high-energy (VHE) detected bursts GRB 201015A and GRB 201216C, and their comparison with a subset of similar bursts. Time-resolved spectral analysis of multistructured GRB 201216C using the Bayesian binning algorithm revealed that during the entire duration of the burst, the low-energy spectral index ( α pt ) remained below the limit of the synchrotron line of death. However, statistically some of the bins supported the additional thermal component. Additionally, the evolution of spectral parameters showed that both the peak energy ( E p ) and α pt tracked the flux. These results were further strengthened using the values of the physical parameters obtained by synchrotron modeling of the data. Our earliest optical observations of both bursts using the F/Photometric Robotic Atmospheric Monitor Observatorio del Roque de los Muchachos and Burst Observer and Optical Transient Exploring System robotic telescopes displayed a smooth bump in their early optical light curves, consistent with the onset of the afterglow due to synchrotron emission from an external forward shock. Using the observed optical peak, we constrained the initial bulk Lorentz factors of GRB 201015A and GRB 201216C to Γ 0 = 204 and Γ 0 = 310, respectively. The present early optical observations are the earliest known observations constraining outflow parameters and our analysis indicate that VHE detected bursts could have a diverse range of observed luminosity within the detectable redshift range of present VHE facilities. 
    more » « less
  4. Abstract Gamma-ray bursts (GRBs) exhibit a diversity of spectra. Several spectral models (e.g., Band, cutoff power law (CPL), and blackbody) and their hybrid versions (e.g., Band+blackbody) have been widely used to fit the observed GRB spectra. Here, we attempt to collect all the bursts detected by Fermi/GBM with known redshifts from 2008 July to 2022 May, having been motivated to (i) provide a parameter catalog independent of the official Fermi/GBM team and (ii) achieve a “clean” model-based GRB spectral energy correlation analysis. A nearly complete GRB sample is created, containing 153 such bursts (136 long GRBs and 17 short GRBs). Using the sample and by performing detailed spectral analysis and model comparisons, we investigate two GRB spectral energy correlations: the correlation of the cosmological rest-frame peak energy ( E p, z ) of the ν F ν prompt emission spectrum with (i) the isotropic-bolometric-equivalent emission energy E γ ,iso (the Amati relation) and (ii) the isotropic-bolometric-equivalent peak luminosity L p,iso (the Yonetoku relation). From a linear regression analysis, a tight correlation between E p, z and E γ ,iso (and L γ ,iso ) is found for both Band-like and CPL-like bursts (except for CPL-like long burst E p, z – E γ ,iso correlation). More interestingly, CPL-like bursts do not fall on the Band-like burst Amati and Yonetoku correlations, suggesting distinct radiation processes, and pointing to the fact that these spectral energy correlations are tightly reliant on the model-wise properties. 
    more » « less
  5. ABSTRACT The afterglow emission from gamma-ray bursts (GRBs) is believed to originate from a relativistic blast wave driven into the circumburst medium. Although the afterglow emission from radio up to X-ray frequencies is thought to originate from synchrotron radiation emitted by relativistic, non-thermal electrons accelerated by the blast wave, the origin of the emission at high energies (HE; ≳GeV) remains uncertain. The recent detection of sub-TeV emission from GRB 190114C by the Major Atmospheric Gamma Imaging Cherenkov Telescopes (MAGIC) raises further debate on what powers the very high energy (VHE; ≳300 GeV) emission. Here, we explore the inverse Compton scenario as a candidate for the HE and VHE emissions, considering two sources of seed photons for scattering: synchrotron photons from the blast wave (synchrotron self-Compton or SSC) and isotropic photon fields external to the blast wave (external Compton). For each case, we compute the multiwavelength afterglow spectra and light curves. We find that SSC will dominate particle cooling and the GeV emission, unless a dense ambient infrared photon field, typical of star-forming regions, is present. Additionally, considering the extragalactic background light attenuation, we discuss the detectability of VHE afterglows by existing and future gamma-ray instruments for a wide range of model parameters. Studying GRB 190114C, we find that its afterglow emission in the Fermi-Large Area Telescope (LAT) band is synchrotron dominated. The late-time Fermi-LAT measurement (i.e. t ∼ 104 s), and the MAGIC observation also set an upper limit on the energy density of a putative external infrared photon field (i.e. ${\lesssim} 3\times 10^{-9}\, {\rm erg\, cm^{-3}}$), making the inverse Compton dominant in the sub-TeV energies. 
    more » « less