skip to main content


Search for: All records

Award ID contains: 2011759

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 25, 2024
  2. Free, publicly-accessible full text available July 25, 2024
  3. Free, publicly-accessible full text available July 25, 2024
  4. Free, publicly-accessible full text available July 25, 2024
  5. Free, publicly-accessible full text available July 25, 2024
  6. Free, publicly-accessible full text available July 25, 2024
  7. Free, publicly-accessible full text available July 25, 2024
  8. Since its launch in 2002, the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) satellite has detected many gamma-ray bursts (GRBs), which are summarised in the INTEGRAL Burst Alert System (IBAS) catalogue. This catalogue combines triggers from the data of the Imager on Board the INTEGRAL (IBIS) and of the anti-coincident shield (ACS) of the SPectrometer on INTEGRAL (SPI). Since the Germanium detectors of SPI also serve as a valuable GRB detector on their own, we present an up-to-date time-resolved catalogue covering all GRBs detected by SPI through the end of 2021 in this work. Thanks to SPI’s high energy coverage (20 keV−8 MeV) and excellent energy resolution, it can improve the modelling of the curvature of the spectrum around the peak and, consequently, it could provide clues on the still unknown emission mechanism of GRBs. We split the SPI light curves of the individual GRBs in time bins of approximately constant signals to determine the temporal evolution of spectral parameters. We tested both the empirical spectral models as well as a physical synchrotron spectral model against the data. For most GRBs, the SPI data cannot constrain the high-energy power law shape above the peak energy, but the parameter distributions for the cut-off power law fits are similar to those of the time-resolved catalogue of gamma-ray burst monitor (GBM) GRBs. We find that a physical synchrotron model can fit the SPI data of GRBs well. While checking against detections of other GRB instruments, we identified one new SPI GRB in the SPI field of view that had not been reported before. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  9. Abstract Gamma-ray bursts (GRBs) exhibit a diversity of spectra. Several spectral models (e.g., Band, cutoff power law (CPL), and blackbody) and their hybrid versions (e.g., Band+blackbody) have been widely used to fit the observed GRB spectra. Here, we attempt to collect all the bursts detected by Fermi/GBM with known redshifts from 2008 July to 2022 May, having been motivated to (i) provide a parameter catalog independent of the official Fermi/GBM team and (ii) achieve a “clean” model-based GRB spectral energy correlation analysis. A nearly complete GRB sample is created, containing 153 such bursts (136 long GRBs and 17 short GRBs). Using the sample and by performing detailed spectral analysis and model comparisons, we investigate two GRB spectral energy correlations: the correlation of the cosmological rest-frame peak energy ( E p, z ) of the ν F ν prompt emission spectrum with (i) the isotropic-bolometric-equivalent emission energy E γ ,iso (the Amati relation) and (ii) the isotropic-bolometric-equivalent peak luminosity L p,iso (the Yonetoku relation). From a linear regression analysis, a tight correlation between E p, z and E γ ,iso (and L γ ,iso ) is found for both Band-like and CPL-like bursts (except for CPL-like long burst E p, z – E γ ,iso correlation). More interestingly, CPL-like bursts do not fall on the Band-like burst Amati and Yonetoku correlations, suggesting distinct radiation processes, and pointing to the fact that these spectral energy correlations are tightly reliant on the model-wise properties. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  10. Abstract GRB 171205A is a low-luminosity, long-duration gamma-ray burst (GRB) associated with SN 2017iuk, a broad-line type Ic supernova (SN). It is consistent with having been formed in the core collapse of a widely separated binary, which we have called the binary-driven hypernova of type III. The core collapse of the CO star forms a newborn NS ( ν NS) and the SN explosion. Fallback accretion transfers mass and angular momentum to the ν NS, here assumed to be born non-rotating. The accretion energy injected into the expanding stellar layers powers the prompt emission. The multiwavelength power-law afterglow is explained by the synchrotron radiation of electrons in the SN ejecta, powered by energy injected by the spinning ν NS. We calculate the amount of mass and angular momentum gained by the ν NS, as well as the ν NS rotational evolution. The ν NS spins up to a period of 47 ms, then releases its rotational energy powering the synchrotron emission of the afterglow. The paucity of the ν NS spin explains the low-luminosity characteristic and that the optical emission of the SN from the nickel radioactive decay outshines the optical emission from the synchrotron radiation. From the ν NS evolution, we infer that the SN explosion had to occur at most 7.36 h before the GRB trigger. Therefore, for the first time, the analysis of the GRB data leads to the time of occurrence of the CO core collapse leading to the SN explosion and the electromagnetic emission of the GRB event. 
    more » « less