skip to main content


Title: Development of the early Cambrian oryctocephalid trilobite Oryctocarella duyunensis from western Hunan, China
Abstract Abundant articulated specimens of the oryctocarine trilobite Oryctocarella duyunensis from the lower Cambrian (Stage 4, Series 2) Balang Formation at the Bulin section in western Hunan Province, South China, permit the description of all meraspid degrees. The maximum number of thoracic segments observed in this collection is 11. Meraspid growth was accompanied by progressive and gradual change in overall form, and this animal showed an homonymously segmented trunk with variation in the number of pygidial segments during ontogeny. Such variation permits a variety of plausible explanations, but a model of successive instars defined by the number of thoracic segments, and in suborder by the number of pygidial segments, is highly unlikely to explain the growth pattern because it would result in the loss of trunk segments between some instars. Degree-based ontogenetic staging is compatible with the variation observed.  more » « less
Award ID(s):
1849963 1850005
NSF-PAR ID:
10333984
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Paleontology
Volume:
95
Issue:
4
ISSN:
0022-3360
Page Range / eLocation ID:
777 to 792
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Patzkowsky, M. (Ed.)
    Abstract A short stratigraphic interval near Bulin in western Hunan (China) yields multiple specimens of the ~514-Myr-old oryctocarine trilobite Oryctocarella duyunensis . Size data obtained from these specimens indicate that, from meraspid degree 1 onward, degrees represent successive instars. Meraspid growth persisted until a terminal stage was reached, providing the first example of determinate growth in trilobites and, notably, in an early Cambrian species. The sample contains three varieties of such terminal stages, recognized as holaspids, with 9, 10, or 11 thoracic segments, respectively. During the meraspid phase, growth rates were not constant in this species. The pattern of growth seen in the Bulin assemblage differs modestly from that reported in the same species from two other localities, attesting to microevolutionary variation in developmental patterns among these collections. 
    more » « less
  2. Three-dimensional models reveal how the mechanics of exoskeletal enrolment changed during the development of a model organism for insights into ancient arthropod development, the 429-million-year-old trilobite Aulacopleura koninckii. Changes in the number, size and allocation of segments within the trunk, coupled with the need to maintain effective exoskeletal shielding of soft tissue during enrolment, necessitated a transition in enrolment style about the onset of mature growth. During an earlier growth phase, enrolment was sphaeroidal, with the venter of the trunk fitting exactly against that of the head. In later growth, if lateral exoskeletal encapsulation was to be maintained trunk length proportions did not permit such exact fitting, requiring an alternative, non-sphaeoridal enrolment style. Our study favours the adoption of a posture in later growth in which the posterior trunk extended beyond the front of the head. This change in enrolment accommodated a pattern of notable variation in the number of mature trunk segments, well known to characterize the development of this species. It suggests how an animal whose early segmental development was remarkably precisely controlled was able to realize the marked variation in mature segment number that was related, apparently, to life in a physically challenging, reduced oxygen setting. 
    more » « less
  3. Abstract

    Quantitative functional anatomy of amniote thoracic and abdominal regions is crucial to understanding constraints on and adaptations for facilitating simultaneous breathing and locomotion. Crocodilians have diverse locomotor modes and variable breathing mechanics facilitated by basal and derived (accessory) muscles. However, the inherent flexibility of these systems is not well studied, and the functional specialisation of the crocodilian trunk is yet to be investigated. Increases in body size and trunk stiffness would be expected to cause a disproportionate increase in muscle force demands and therefore constrain the basal costal aspiration mechanism, necessitating changes in respiratory mechanics. Here, we describe the anatomy of the trunk muscles, their properties that determine muscle performance (mass, length and physiological cross‐sectional area [PCSA]) and investigate their scaling in juvenileAlligator mississippiensisspanning an order of magnitude in body mass (359 g–5.5 kg). Comparatively, the expiratory muscles (transversus abdominis,rectus abdominis,iliocostalis), which compress the trunk, have greater relative PCSA being specialised for greater force‐generating capacity, while the inspiratory muscles (diaphragmaticus,truncocaudalis ischiotruncus,ischiopubis), which create negative internal pressure, have greater relative fascicle lengths, being adapted for greater working range and contraction velocity. Fascicle lengths of the accessorydiaphragmaticusscaled with positive allometry in the alligators examined, enhancing contractile capacity, in line with this muscle's ability to modulate both tidal volume and breathing frequency in response to energetic demand during terrestrial locomotion. Theiliocostalis, an accessory expiratory muscle, also demonstrated positive allometry in fascicle lengths and mass. All accessory muscles of the infrapubic abdominal wall demonstrated positive allometry in PCSA, which would enhance their force‐generating capacity. Conversely, the basal tetrapod expiratory pump (transversus abdominis) scaled isometrically, which may indicate a decreased reliance on this muscle with ontogeny. Collectively, these findings would support existing anecdotal evidence that crocodilians shift their breathing mechanics as they increase in size. Furthermore, the functional specialisation of thediaphragmaticusand compliance of the body wall in the lumbar region against which it works may contribute to low‐cost breathing in crocodilians.

     
    more » « less
  4. Walking on a beam is a challenging motor skill that requires the regulation of upright balance and stability. The difficulty in beam walking results from the reduced base of support compared to that afforded by flat ground. One strategy to maintain stability and hence avoid falling off the beam is to rotate the limb segments to control the body’s angular momentum. The aim of this study was to examine the coordination of the angular momentum variations during beam walking. We recorded movement kinematics of participants walking on a narrow beam and computed the angular momentum contributions of the body segments with respect to three different axes. Results showed that, despite considerable variability in the movement kinematics, the angular momentum was characterized by a low-dimensional organization based on a small number of segmental coordination patterns. When the angular momentum was computed with respect to the beam axis, the largest fraction of its variation was accounted for by the trunk segment. This simple organization was robust and invariant across all participants. These findings support the hypothesis that control strategies for complex balancing tasks might be easier to understand by investigating angular momentum instead of the segmental kinematics. 
    more » « less
  5. Arthropods are characterized by having an exoskeleton, paired jointed appendages and segmented body. The number and shape of those segments vary dramatically and unravelling the evolution of segmentation is fundamental to our understanding of arthropod diversification. Because trilobites added segments to the body post-hatching which were expressed and preserved in biomineralized exoskeletal sclerites, their fossil record provides an excellent system for understanding the early evolution of segmentation in arthropods. Over the last 200 years, palaeontologists have hypothesized trends in segment number and allocation in the trilobite body, but they have never been rigorously tested. We tabulated the number of segments in the post-cephalic body for over 1500 species, selected to maximize taxonomic, geographical and temporal representation. Analysis reveals long-term shifts in segment number and allocation over the 250-million-year evolutionary history of the clade. For most of the Palaeozoic, the median number of segments in the body did not change. Instead, the total range decreased over time and there was long-term increase in the proportion of segments allocated to the fused terminal sclerite relative to the articulated thoracic region. There was also increased conservation of thoracic segment number within families. Neither taxonomic turnover nor trends in functionally relevant defensive behaviour sufficiently explain these patterns. 
    more » « less